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Kinematic and Dynamic Synthesis
of Geared Robotic Mechanisms

This paper describes a methodology for the design of geared robotic mechanisms.
It is shown that certain gear-coupled manipulators can be designed to possess kin-

ematic isotropy property at a given end-effector position. For these gear-coupled
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manipulators, the train values can be treated as a product of two-stage gear reduc-
tions. The second-stage reduction can be uniquely determined from the kinematic
isotropic condition, while the first-stage reduction can be determined from dynamic
consideration. This approach, through proper choice of gear ratios, can provide

these gear-coupled manipulators with desired kinematic and dynamic characteristics.

Introduction

Various performance measures have been proposed for the
evaluation of kinematic and/or dynamic performance of a
manipulator. Most of the kinematic performance measures,
such as the velocity ellipsoid (Asada and Cro Granlto, 1985;
Dubey and Luh, 1986), the generalized velocity ratio (Asada
and Cro Granlto, 1985; Dubey and Luh, 1986), the manipul-
ability measure (Yoshikawa, 1985a), and the condition number
(Gosselin and Angeles, 1988), are based on the relation between
velocity vectors in the joint-space and end-effector-space of
an open-loop manipulator. As for the dynamic performance
measure, Yoshikawa (1985b) proposed a dynamic manipula-
bility index which defines the relation between joint torque
and the end-effector acceleration. Since these performance
measures are based on the transformation between the joint-
space and end-effector-space, they can be used for the eval-
uation or design of direct-drive manipulators. However, they
are not very helpful in evaluating manipulators which use gear
trains or other means for power transmission.

For geared robotic mechanisms, the transformation between
the actuator-space and joint-space must also be taken into
consideration. That is, the transformation has to be extended
from between ‘‘end-effector-space and joint-space’’ to ‘‘end-
effector-space and actuator-space.’’ The structure matrix, de-
fined by Chang and Tsai (1989), transforms the velocity vector
from joint-space to actuator-space while the Jacobian matrix
transforms the velocity vector from joint-space to end-effector-
space. Together, they give the overall transformation from
actuator-space to end-effector-space.

In what follows, the definitions of various performance
measures will be extended from direct-drive manipulators to
nondirect-drive manipulators and, in particular, gear-coupled
manipulators. The necessary condition for kinematically iso-
tropic transformation will be derived. The performance eval-
uation problem will be extended to a design optimization
problem. Finally, equations for train values determination will
be derived by taking both kinematics and dynamics into con-
sideration.
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Kinematic Characteristics

Generalized Velocity Ratio. The velocity ratio and the me-
chanical advantage are the two most commonly used criteria
for evaluating the performance of a single-input and single-
output mechanism such as the four bar linkage. The velocity
ratio is the ratio of output velocity to input velocity and the
mechanical advantage is the ratio of output torque to input
torque at the instant of interest. For n-DOF (degree-of-free-
dom) mechanisms, the concept of velocity ratio and mechanical
advantage has been extended to that of generalized velocity
ratio and generalized mechanical advantage. Specifically, the
magnitude of input velocity vector is compared to that of the
output velocity vector.

Figure 1 shows a geared robotic mechanism in conceptual
form, where the inputs to the mechanism are the actuators and
the output is the end-effector. Let ®, O, and X be the dis-
placement vectors associated with the actuators, joints, and
the end-effector. Let &, O, and X be the time derivatives of
®, O, and X. And let &, 7, and F be the generalized force
vectors in the actuator-space, joint-space and end-effector-
space, respectively. Then, the joint and output velocity vectors
are related by the Jacobian matrix, J, as

X =J0, (1)
and the joint torque and output force vectors are related by
7=J'F )

where ( )7 denotes the transpose of ().
The actuator and joint velocity vectors are related by the
structure matrix, A4, as

$=A470, 3)

and the joint and actuator torque vectors are related by
T=A¢, 4)

o © X
— A - J f -—
actuator ! joint + end-effector
space | space , Space
Fig. 1 Conceptual block diagram of a geared robotic mechanism
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where the elements of A are functions of gear ratios in a
" mechanism. The ith row of the structure matrix A describes
how the resultant torque about joint ‘‘i’’ is effected by the
input actuators and, on the other hand, the jth column of
matrix A describes how the torque of an input actuator ‘"’
is transmitted to various joints of a mechanism. We note that
the velocity vector, X, in Eq. (1) contains both linear and
angular velocities of a point in the end-effector. Similarly, the
force vector, F, in Eq. (2) contains both forces and couples
acting on a point in the end-effector.

In general, the elements in a velocity vector may have dif-
ferent units. Hence, it is necessary to define a weighted norm
for the magnitude of a velocity vector. In this paper, the fol-
lowing quadratic forms are defined for the square of the norms:

IXIZEXTWxX ()
and

1$12=d"W & (6)
wherg: W, and W, are diagonal, positive, definite, weighting
matrices.

As an extension, the square of the generalized velocity ratio
K, is defined as the ratio of the two quadratics:

> 12
K 55%%3 (7)
Substituting Eqgs. (1) and (3) into (5) and (6), we obtain
1X12=0TJ/7W,J6
=d"4 VW JA"Te (8)
and \
1$12=07AW, 470 9)
wh;:re ()~ ! denotes the inverse of (), and ()~ the inverse of
( )F.rom Egs. (6), (7), (8), and (9), we obtain
T4 WJATTE

2
RER 4o
or

Equations (10) and (11) are known as Rayleigh’s quotient. The
value of K, depends on the position as well as direction of
motion of the end-effector. The extreme values of K, are the
square root of the eigenvalues of the following eigenvalue
problem (Strang, 1980):

W3'A T wJIA T)e =) (12)

or
(JTWJ)O=NAW,4T)O (13)

Equations (12) and (13) have the same eigenvalues, A’s, and
their eigenvectors are related by Eq. (3). Hence, the eigenvalues
of Eq. (12) or (13) completely characterize the kinematic per-
formance of a manipulator at a given end-effector position.

Isotropic Condition. Equations (12) or (13) can also be
used for design optimization. Suppose the kinematic structure
of a manipulator has already been selected and the problem
is to define the gear ratios such that the generalized velocity
ratio is less directional sensitive. This problem can be solved
by minimizing the difference between the maximum and min-
imum eigenvalues of Eq. (12) or (13). Equation (12) contains
both Jacobian and structure matrices on the left-hand side of
the equation, while (13) contains the Jacobian matrix on the
left-hand side and the structure matrix on the right-hand side.
The separation of Jacobian matrix from structure matrix makes
it more convenient to use Eq. (13) for the purpose of design
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Fig. 2 Schematic diagram of a two-DOF planar individual joint-drive
manipulator

optimization. For Eq. (13) to have nontrivial solutions, the
following condition must be satisfied:

det(P—\Q) =0

where P = J'W,JJand Q = AW A"

Since both P and Q are positive definite matrices, the ei-
genvalues, \’s, are all positive real numbers. It has been shown
that for A\ to be an r-fold root, all the principal minors of (P
— AQ) starting from order n to order n — r + 1 must vanish
(Jeffreys, 1956; Goldstein, 1981). If A is an n-fold root for an
n-DOF geared robotic mechanism, then the mechanism is said
to be kinematically isotropic at the given end-effector position.
Under this condition the generalized velocity ratio, K, =
\/X, is independent of the direction of motion. For A to be an

n-fold root, the following proportional condition must be sat-
isfied

(14)

(JTW D) ij=NAWAT), (15)

where ( );; denotes the (i, j) element of the matrix enclosed in
the parenthesis.

Individual Joint-Drive Manipulators. If every moving link
in a manipulator is driven by an actuator mounted on its
preceding link through a gear-reduction unit such as the one
shown in Fig. 2, then the joint motions are independent of
each other. We call this type of manipulators individual joint-
drive manipulators. The structure matrix for an individual
joint-drive manipulator has the following form:

g11
0

a=| & (16)

0
b g NN o

where g;;, is the gear reduction for the ith actuator. Hence,

] ng% 1 i
0
Wzggz

AW AT = (17)

- wng%m..

where w; is the (i, 7) element of W,,.
At a given end-effector position, the product of Jacobian
matrix can be written as

-

€11 €12 --- €1

JTWJ= €12 €22 - €2n (18)

L€1n €21 -+ €pn.
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Fig. 3 Schematic diagram of a two-DOF planar gear-coupled manipu-
lator

Substituting Eqs. (17) and (18) into (15), yields
{w,-g%,-, i=J,
€= A 0 .« L.
. i#E].
It is obvious that Eq. (19) cannot be satisfied by any choice
of g, unless ¢; = 0 for all i not equal to j, which requires

certain special link and joint parameters. This leads to the
following theorem.

(19)

Theorem 1. Individual joint-drive manipulators cannot
possess a kinematically isotropic property unless the product
of Jacobian matrix, JTWXJ, is a diagonal matrix at the position
of interest.

Gear-Coupled Manipulators. If some of the links in a ma-
nipulator are driven by actuators mounted on links other than
their preceding links through the use of gear trains, then the
joint motions are coupled. We call this type of mechanisms
gear-coupled manipulators.

The structure matrix for gear-coupled manipulator is no-
longer diagonal (Chang and Tsai, 1989). For an n-DOF gear-
coupled manipulator, Eq. (15) yields n(n + 1)/2 nonlinear
equations. However, the number of unknowns contained in
Eq. (15) depends on the arrangement of transmission lines,
i.e., the number of nonzero elements in the structure matrix.
It is essential that the number of unknowns is not less than
the number of equations. If the number of unknowns is less
than the number of equations, then special linkage geometry
is required to yield an isotropic condition. If the number of
unknowns is greater than the number of equations, then there
exist some free choices among the nonzero elements in the
structure matrix. This leads to our second theorem.

Theorem 2. Gear-coupled manipulators can be designed
to possess an isotropic property at a given end-effector position
if and only if the number of nonzero element in the structure
matrix is equal to or greater than n(n + 1)/2.

Example. Figure 3 shows a two-DOF planar manipulator
with both actuators mounted on the ground. There are two
transmission lines. The first transmits an actuator torque
through the (4, 2) gear pair. The second transmits another
actuator torque through the (5, 6), (6, 7), and (7, 3) gear pairs.
The structure matrix is given by

A= 811 812 _ g1 &12
0 81237/ 7167 0 gx»
where gy = N/Ny, 812 = Ng/Ns, 82 = 812 6, r37., and

where r;6, = N3/Ng,, r37, = N3/N;,, and N; denotes the
number of tooth on gear i.

(20)
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; k k first-stage gear reduction
........ i—----_----------i-_---o
Link 2: 25.40 X 5.08 X 2.64 (cm),
o e -7 1 Link 3: 20.32 X 3.81 X 1.91 (cm).
Fig.4 lllustration of two-stage gear reductions of the manipulator shown

in Fig. 3

Assuming at a given end-effector position, the product of
Jacobian matrix takes the following form:

JTH/;J= [611 612]

21
€12 €22 @D

and W, is an identity matrix, then it follows from Egs. (15),
(20), and (21) that

K5 (gh+gh)=ey (22a)
Kigign=¢n (22b)
K %g%;, = €22 (22c)

Solving Eqs. (22a)-(22c), we obtain
gy, ] = ‘\/(611622—6%2)/622 (23a)

K,

12| =12/ (Ve Ky) (23b)
|g2) =en/K, (23¢)

and where the signs of g,;, g2, and g, in A can have one of
the following combinations:

=y iy el T ]s ]

Hence, a sign change along any transmission line does not
change the isotropic condition. Alternatively, Egs. (23a-23¢)
can be written in the following form:

gu=cak (24a)
g12=Pk (24))
r37r r16r =8x/812=€n/€p (24c¢)
where
k=\/(€u€zz-6%2)/622=\/det(JTWJJ) (25a)

oK, aK e

B= a1/ (11622 — €)= cwern/N det (JTW,J)  (25b)

We note that o can be chosen arbitrarily. But, once « is
chosen, @ is determined by Eq. (25b). It follows from Egs.
(24) and (25) that &, which is inversely proportional to the
generalized velocity ratio K,, can be considered as a scaling
factor and the train value for each transmission line can be
thought of as a product of two-stage gear reductions as shown
in Fig. 4. The first-stage gear reduction, k, which is common
to all transmission lines, provides the desired overall reduction
while the second-stage gear reduction provides the necessary
condition for an isotropic transformation.
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(a)
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Ji

(b)

Fig. 5(a) A one-DOF gear mechanism, (b) Variation of output acceler-
ation vs. gear ratio

For the manipulator shown in Fig. 4, it can be shown that
the Jacobian matrix is given by

s [ ~asSu-as, -as;
d;C\2+ d,C, d;Cy

where d, = 22.86 cm, d; = 17.78 cm are the lengths of link
2 and link 3, respectively, and where S;, C;, S|,, and C;, denote
sin(@;), cos(8,), sin(d;, + 6,), and cos(6; + 6,), respectively.
Hence, with the end-effector positioned at [X;, Y;] = [22.86,
0], we have

(26)

0 16.38
J= [22.86 6.91] (27)
Assuming W, and W, are both identity matrices, we have
T _ 1 522.58 157.96
T W= [157.96 316.05 (28)
Substituting Eq. (28) into (24) and (25), we obtain
k=21.063/(aK,) (29a)
$=0.422 o (29b)
r37r I6r =2 (29¢)
or
21.063 | @ 0.422 ¢
4=7%, [o 0.844 a] G0

For example, we can choose « = 1and r3;, = 1, then 8 =
0.422 and r; s, = 2. Hence, a designer can finalize the second-
stage gear reduction without concerning the generalized ve-
locity ratio, K,.

Dynamic Characteristics

In the previous section, we have shown that infinite many
sets of gear ratios can be used to produce a kinematically
isotropic condition for those gear-coupled manipulators which
satisfy theorem 2. This leaves additional room for dynamic
optimization.

Principle of Inertia Match and Acceleration Capacity. For
a one-DOF geared mechanism as shown in Fig. 5(a), the equa-
tion of motion can be written as
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T
-7, T, -T

2
XJ MA 5] =1

WgA'lMJ-1X=1

End-effector-space Actuator-space

Fig. 6 Transformation between actuator-space and end-effector-space

(Jo+ &) g =gt 31)

where J; denotes the load inertia, J; the rotor inertia of input
actuator, §; the input torque, g the angular displacement of
the output shaft, and g = N,/N, the gear ratio.

Assume that J; and J; remain constant regardless of the
change in gear ratio and assume that there is no power loss in
the gear mesh. Figure 5(b) shows the relation between the
output shaft acceleration, g, and the gear ratio, g. It is clear
that, given &;, J;, and J;, there exists an optimum gear ratio
which yields a maximum output acceleration. At the optimum
design, the output acceleration and the gear ratio are given by

.k
Gmar ==

J
g¢2>pt='7l;

Equations (32a) and (32b) can be simply stated as follows.
At the optimum design, the gear ratio is chosen such that the
reflected input inertia is ‘‘matched’’ with the output inertia.
This is known as the ‘‘principle of inertia match’’ (Stockdale,
1968).

For an n-DOF geared robotic mechanism, the equations of
motion can be written in the joint-space as

MO +07CO+G=At (33)

where M is an n by n inertia matrix, ©7CO is the generalized
inertia force contributed by the coriolis and centrifugal effects,
and G is the generalized active force contributed by gravita-
tional effect and/or external loads (Chen et al., 1990).

In what follows, we shall neglect the coriolis and centrifugal
effects, and we shall also assume that there are no gravitational
forces and external loads. Then, Eq. (33) can be simplified as

MO = A (34)

Differentiating Eq. (1) and neglecting the coriolis and cen-
trifugal accelerations, we obtain

(32a)

(32b)

X =J6 (35)
Eliminating © from Egs. (34) and (35), vields
A MI X =¢ (36)

Equation (36) provides a torque transformation from the end-
effector-space to the actuator-space. In this paper, the follow-
ing quadratic forms are defined for the square of the norm of
the input torque and end-effector acceleration.

1E12=tTW, ¢ (37a)
IX12=XTw,X (37b)

where W; is a diagonal, positive definite, weighting matrix.

In general, W, is chosen as the inverse of Ws, 1.e., W W, =
I

Substituting Eq. (36) into (37a), we obtain

12 =XTT""M"A~ W, A" 'MJ'X (38)

Transactions of the ASME



Hence, at a given posture, |£1? = 1 yields an acceleration
ellipsoid in the end-effector-space as shown in Fig. 6. The
acceleration capacity, A.C., is defined to be proportional to
the volume of the ellipsoid, i.e.,

A.C.= 1/(11 \/I)

where u;, 1 = 1,2, 3, ..., n, are the eigenvalues of the fol-
lowing eigenvalue problem:

(WlT TM™A-TWeAd~ ' M~ HX =uX (40)

It can be shown that (Strang, 1980) the acceleration capacity,
A.C., is equal to one over the square root of determinant of
the matrix, i.e.,

A.C.=1/[det(W; T TMTA~TW A~ 'MJ~")]1"?
_ [det(JTW . J)det (AW ,AT))"?

(39)

41)
det (M)
Substituting Eq. (15) into (41), we obtain
det (JTW,J)
.C.= 42
A.C Kdet (M) (42)

The acceleration capacity, A.C., can be used as an index to
indicate the ability of a manipulator to respond to a given set
of input torques. The larger the acceleration capacity, the more
responsive the system is. At a given end-effector position the
determinant of the product of Jacobian matrix, det (J?W.,J),
is a constant while the determinant of inertia matrix, det (M),
is a function of gear ratios. Hence, the unknown gear ratios
can then be used to optimize the acceleration capacity.

Acceleration Capacity Optimization. The inertia matrix M
in Eq. (33) can be divided into two parts, namely, the contri-
bution of the major links in the equivalent open-loop chain,
M,,, and that of the carried links, M, (Chen et al., 1990).

M=M,+M. (43)

Considering the manipulator shown in Fig. 4 as an example.
Let J; be the axial moment of inertia of gear i, P, = [pa, P2,)7
the position vector of the combined mass center of link 2 and
gear 7 expressed in the link 2 coordinate system, P; = [p,,
p3y]T the position vector of link 3 expressed in the link 3 co-
ordinate system, m, the combined mass of link 2 and gear 7,
mj; the mass of link 3, I,, the combined moment of inertia of
link 2 and gear 7 about the Z,-axis, and I;, the moment of
inertia of link 3 about Z;-axis. Then, it can be shown that

M, = [mmll mm12:| (44)
Mpmi2 Mm22
where |
M1 =mad' 5+ Ly + my(d'3+2d,d; Cy+d2) + I;;,  (45a)
Mz =m;(d’3+dyd; C;) + I, (45b)
Mpaz=msd’3 + I, (45¢)
and
5 &
M=k [ 6 53]
J Jers,71r16°
T Jers,7 fﬁ,e' Jo (13,7 ’6:/3,6 )2+ Jors 1 '] (40)
where
d; = (px+a,) 47a)
d; = (Pix+d3) (47b)
8, = Jao + J5B° 47¢)
8= JsB%rs 7120 (47d)
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83=Js(Br37:1r76)° (47e)

Note that r1 4,737, = 2, and the contribution of axial mo-
ments of inertias of gears 6 and 7 to the overall inertia can be
neglected due to the small values of Jg, J-, and ri6:rs7.. How-
ever, J, and Js can have significant effect on the overall inertia
due to the &% term in Eq. (46). Hence, the inertia matrix con-
tributed by carried links can be approximated by

2] 61 6
M=k [52 83]

In what follows, we shall assume that adjusting a gear ratio
does not have significant effect on the mass and moment of
inertia of the gear pair. Substituting Eqs. (44) and (46) into
Eq. (43), the determinant of inertia matrix can be written as

(48)

det (M) =det (M,,) + kK2p, + k0, (49)
where
P1 = Miy1103 — 2Myy1207 + Mypa6) (50a)
p2= 8163 — 83 (505)
Substituting Egs. (25a) and (49) into (42), we obtain
-1
A.C.=azezz[&%4ml+pl+k2sz (51)

It follows from Eq. (51) that, for a given manipulator posture,
the acceleration capacity is a function of the first-stage gear
reduction, k. Taking the derivative of Eq. (51) with respect to
k and equating the resulting equation to zero, we obtain

k*=det(M,,)/p, (52)

Substituting Eqs. (47¢c-47¢) into Eq. (50b) and then the re-
sulting equation into Eq. (52), the first-stage gear reduction,
k can be solved as

rm (det(Mm)e%z) v

JoJso* B3, (53)

Taking second derivative of Eq. (51) with respect to k and
substituting Eq. (52) into it, we obtain

3 [0A.C. _ _ _8aeppy/det (M) 54
Ok\ 0k [ 4_deMpy (54)
P2

[o1 + 2V podet (M) 1

Since p; and ey, are positive, Eq. (54) will always be negative.
Hence, Eq. (53) provides the optimum condition for maximum
acceleration capacity of this planar two-DOF manipulator. At
the optimum condition, the acceleration capacity is given by

A.C.op = aenlp1 + 2\/prdet (M,)] ™! (55)

Assuming that m, = 2.6 kg, m; = 1.156 kg, p,, = — 12.872
cm, py, = —10.201 cm, I, = 142.9 kg-cm?, I, = 40.94 kg-
cm?, J, = Js = 8.79 * 10~ > kg-cm?, for the manipulator shown
in Fig. 4, then with the end-effector positioned at [X:, Y] =
[22.86, 0], M,, is given by

957.95  29.46 )
M"’“[ 29.46 107.34] (kg-car)

Substituting Eqgs. (56) and (28) into (53), and with ¢ = 1,
= 0.422, r;7, = 1, and r,¢, = 2, we obtain k¥ = 65.59 as
the first-stage gear reduction. Hence, the generalized velocity
ratio is given by K, = 0.32112 cm.

Since the Jacobian matrix and the inertia matrix are position
dependent, the isotropic property and maximum acceleration
capacity obtained above are only local conditions. Usually, a
reference position within the workspace is selected for design
optimization. The performance of a manipulator will then vary
from position to position. Hence, the reference position must
be chosen carefully in order to achieve a good compromise
between extreme positions. It seems that this can only be ac-
complished by an iterative process.

(56)
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Fig. 7 Workspace of the manipulator shown in Fiq. 4
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Fig. 8 Performances indices vs. end-effector position
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A.C.*10°
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-

. det(M)

200000 -  (kg-cm?)?

100000 = : \

det(JTJ) ecm*

v T M R I Y d
0 10 20 \ 30 40
Design reference position

End-effector position =[X,, 0] (cm)

Fig. 9 Acceleration capacity (A.C.) vs. end-effector position

Figure 7 shows the workspace of the manipulator shown in
Fig. 4. Since the Jacobian matrix and inertia matrix are sym-
metric about the first joint axis, it is only necessary to inves-
tigate the kinematic and dynamic performance along the X)-
axis. As a first approximation, the middle point of the work-
space is chosen as the reference position for design optimi-
zation. Figure 8 shows the variation of the kinematic condition
number (VAma/Amin) and dynamic condition number

(\ timax’ Bmin) as functions of the end-effector position. Since
X, = 22.86 cm is chosen as the reference position, the global
minimum kinematic condition number occurs at this reference
position. However, the global minimum dynamic condition
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number does not occur at the reference position. Figure 9 shows
the variation of the determinants of M and J7J, and the var-
iation of .the acceleration capacity, A.C., as functions of the
end-effector position. As can be seen from Fig. 9, the global
maximum acceleration capacity occurs at X; = 29.53 cm,
instead of the reference position. This is due to the influence
of the determinant of the product of the Jacobian matrix, J'J.
Note that the maximum value of det(J7J) occurs at X; =
29.53 cm coincidently.

Summary

We have derived a methodology for the determination of
train values in geared robotic mechanisms. It is shown that
certain gear-coupled manipulators can be designed to possess
an isotropic condition at a given end-effector position. The
train values of these gear-coupled manipulators can be thought
of as a product of two-stage gear reductions. The second stage-
gear reduction can be determined by the kinematic isotropic
condition while the first-stage gear reduction can be determined
by the maximum acceleration capacity condition. This ap-
proach can provide these gear-coupled manipulators with de-
sired kinematic and dynamic characteristics.
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