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This paper describes a methodology for the drive train configuration arrangement of
gear coupled manipulators. The approach is based on the idea that the kinematic
structure of a gear coupled manipulator can be described by an equivalent open-loop
chain (EOLC) and mechanical power transmission lines that drive the EOLC. Conditions
to select proper drive train configuration such that manipulators can possess kinematic
isotropic property will be presented. Procedures to select gear ratio based on optimum
dynamic performance will also be extended from two-degree of freedom (DOF) systems
to three-DOF systems. From the determined drive train configuration and gear ratios,
location of actuators and details of the mechanical power transmission lines can be
decided accordingly. A two-DOF manipulator and a three-DOF wrist are used as illustra-
tive examples.  1997 John Wiley & Sons, Inc.
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1. INTRODUCTION

The kinematic structure of a robot manipulator often
takes the form of an open-loop configuration. An
open-loop robot manipulator is mechanically simple
and easy to construct. However, it does require the
actuators to be located along the joint axes, which,
in turn, degrades the dynamic performance of the
system. For this reason, many robot manipulators are
constructed in a partially closed-loop configuration to
ease the actuator design and/or to reduce the inertia

Figure 1. Functional representation of a wrist.loads on the actuators. For the case of a gear coupled
manipulator (GCM), gears are used to permit the
actuators to be located as close to the base as possible
and to transmit power to various joints of the open- isotropic property will be extended from two-DOF
loop chain. The open-loop chain of a GCM can be to three-DOF GCMs.
identified by removing all gears from it, and it is
called the equivalent open-loop chain (EOLC).1 Each
link in the EOLC is referred to as a primary link; all

2. GEAR COUPLED MANIPULATORSthe other links that are not rigidly attached to the
primary links, including gears and actuator-rotors, Figure 1 shows the functional representation of a
are called the secondary links or carried links.2 The GCM resembling a wrist mechanism. It has three
arrangement of the secondary links, which describes DOF; links 5, 6, and 9 are the input links and link 4
where the input actuators are located and how the is the output link, called the end-effector. Motors can
input torques are transmitted to various joints of the be attached to the input links to drive the wrist. Figure
mechanism, forms the mechanical power transmis- 2 shows the associated canonical graph representa-
sion lines of the manipulator. tion1. From the canonical graph representation, it can

Through the mechanical power transmission line, be seen that links 1, 2, 3, and 4 are the primary links,
which consists of spur or bevel gear trains, power is and links 5, 6, 7, 8, 9, 10, and 11 are the secondary
transmitted to the end-effector to which a payload links. Secondary links 5, 6, 7, 9, and 10 are carried by
can be attached. Chang and Tsai3 showed that the primary link 1, while secondary links 8 and 11 are
structure matrix, which transforms the velocity vector carried by primary link 2. Figure 3 shows the EOLC
from the joint-space to the actuator-space, describes of the wrist. A coordinate system is attached to each
the mechanical power transmission lines of a manipu- primary link of the EOLC in accordance with the
lator. They also showed that there are 30 admissible Hartenberg and Denavit convention5 where di is the
structure matrices for three degree-of-freedom (DOF) translational distance along Zi -axis, and ai and ai are
GCMs. Chen and Tsai4 developed a methodology to the offset distance and the twist angle between Zi and
determine the gear ratios based on kinematic isotropy Zi11 axes, respectively. The angle qi11,i , measured from
and optimum acceleration capacity. However, their Xi -axis to Xi11-axis about Zi-axis, is referred to as the
result is limited to two-DOF geared robotic mecha- joint angle, ui , for the EOLC. Note that for the wrist
nisms. Also, the kinematic isotropic condition can shown in Fig. 1, a1 5 f/2, a2 5 2f/2, a3 5 0, and
not be guaranteed for a given EOLC at a prescribed a1 5 a2 5 a3 5 0, respectively.
design reference point with an arbitrarily chosen
structure matrix. Hence, only those structure matrices
that are compatible with the given geometric prop-
erty of the EOLC can be used as proper drive trains.
In what follows, a methodology for the arrangement
of drive train configuration of GCMs will be devel-
oped. It will be shown that GCMs can possess kine-
matic isotropic property and optimum dynamic per-
formances through proper choice of drive train
configuration and gear ratios. The condition for opti-
mum acceleration capacity followed with kinematic Figure 2. Canonical graph representation.
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The torque vectors at the joint-space and actuator-
space are related as

3
t21

t32

t43

45 A 3
j5

j6

j9
4 (6)

where t21, t32, and t43 are the joint torques, j5, j6, and
j9 are the torques applied at input link 5, 6, and 9,
respectively, and

Figure 3. Typical EOLC of a three-DOF wrist.

Let F, Q, and X be the displacement vectors associ- A 5 3
r2,5 r7,6 r10,9

0 r7,6 r8,7 r10,9 r11,10

0 r7,6 r8,7 r4,8 r10,9 r11,10 r4,11
4 (7)

ated with the actuators, joints, and the end-effector.
Let F

˙
, Q

˙
and X

˙
be the time derivatives of F, Q, and

X. And let j, t, and F be the generalized force vectors
where ri,j 5 Ni/Nj and Ni denotes the number of teethin the actuator-space, joint-space, and end-effector-
on gear i, ri,j 5 1Ni/Nj if a positive rotation of gearspace, respectively. The velocity vectors at the joint-
i, with respect to the arm k of gear pair (i, j), providesspace and end-effector-space are related by the Jacob-
a positive rotation of gear j. In addition, ri,j 5 2Ni/Njian matrix, J, as
if a positive rotation of gear i, with respect to the arm
k of gear pair (i, j), provides a negative rotation ofX

˙
5 JQ

˙
(1)

gear j, and where the sense of rotation is defined by
applying the right-hand-screw rule to the Zk-axis.and the torque vectors at the joint-space and end-

From equation (6), it can be seen that the i-th roweffector-space are related by
of the structure matrix A describes how the resultant
torque at joint ‘‘i’’ is affected by the input actuators.

t 5 JT F (2)
On the other hand, the kth column of matrix A de-
scribes how the torque of an input actuator ‘‘k’’ iswhere ( )T denotes the transpose of ( ).
transmitted to various joints of a mechanism. Thus,The velocity vectors at actuator-space and joint-
the (i, k) element of structure matrix A representsspace can be related by using fundamental circuit
how the torque of input actuator ‘‘k’’ is transmittedtheory and coaxial conditions1,3 as
to joint ‘‘i’’ of the mechanism. Since the removal of
all the gears from the mechanism results in an open-

F
˙

5 ATQ
˙

(3)
loop chain, torques can only be transmitted by gear
trains except for the direct drive joint, and the jointand the torque vectors at the joint-space and actuator-
torques affected by an actuator must be consecutive.space are related by
The gear train that results in a series of nonzero ele-
ments in the kth column of structure matrix A is called

t 5 Aj (4)
the mechanical power transmission line for the input
actuator k3. Note that the first nonzero element inwhere A is the structure matrix3 and elements of A
the mechanical power transmission line for the inputare functions of gear ratios.
actuator k indicates the location of the input actuator.For the wrist shown in Figure 1, the Jacobian
Let joint ‘‘i’’ be the first joint affected by input actuatormatrix can be written as
k and ai,k be the first nonzero element of the mechanical
power transmission line for the input actuator k. Let
(bj,i)k be the ratio between the torque contributed by
input actuator ‘‘k’’ at joint ‘‘j’’ and that a joint ‘‘i’’.J 5 3

0 Sa1
S2 Sa1

Ca2
S2 1 Ca1

Sa2
S2 C3 1 Sa2

C2 S3

0 2Sa1
C2 2Sa1

Ca2
C2 2 Ca1

Sa2
C2 C3 1 Sa2

S2 S3

1 Ca1
Ca1

Ca2
2 Sa1

Sa2
C3

4 The ( j, k) element of structure matrix A, ai,k, can be
written as

aj,k 5 ai,k (bj,i)k (8)(5)



604 • Journal of Robotic Systems—1997

Note that (bj,i)k is equal zero if joint j is not affected overall transformation is equal to one. Under this
condition the generalized ratio, Kv 5 Ïl, is indepen-by the kth input actuator.

For the wrist shown in Figure 1, there are three dent of the direction of motion. The manipulator with
directional insensitive generalized velocity ratio istransmission lines: 5 R 2, 6 R 7 R 8 R 4, and 9 R

10 R 11 R 4. From equations (7) and (8), the structure said to possess kinematic isotropic property at a given
end-effector position. It has been shown that for lmatrix can be rewritten as
being an n-fold root of the characteristic equation of
equation (12), the following proportional condition
must be satisfied4

A 5 3
a1,1 a1,2 a1,3

0 a1,2(b2,1)2 a1,3(b2,1)3

0 a1,2(b3,1)2 a1,3(b3,1)3
4 (9)

(AAT )i,j 5
1
k2

v
(JT J)i,j (13)

where
where ( )i,j denotes the (i, j) element of the matrix
enclosed in the parenthesis.a1,1 5 r2,5 (10a)

a1,2 5 r7,6 (10b)
4. SELECTION OF DRIVE
TRAIN CONFIGURATIONa1,3 5 r10,9 (10c)

Equation (13) can be used for the design of GCMs.(b2,1)2 5 r8,7 (10d) Supposing the kinematic structure of the EOLC has
been selected from the geometric consideration, the(b3,1)2 5 (b2,1)2 r4,8 (10e) problem now is to select the proper drive train con-
figuration such that the kinematic isotropic condition(b2,1)3 5 r11,10 (10f) can be achieved at a prescribed posture, and with the
selected drive train configuration, to define the gear(b3,1)3 5 (b2,1)3 r4,11 (10g) ratios. For an n-DOF GCM, equation (13) yields
n(n 1 1)/2 nonlinear equations. However, the num-
ber of unknowns in equation (13) depends on the

3. KINEMATIC ISOTROPIC CONDITION location of input actuators and the transmission lines
arrangement, i.e., the number of nonzero elements in

The generalized velocity ratio (Kv), which is defined the structure matrix. It is essential that the number
as the ratio of the quadratic norms of the velocity of unknowns in the structure matrix of the chosen
vectors in end-effector space and actuator space, can drive train configuration is not less than the number
be represented in the joint-space as4

of equations. If the number of unknowns is less than
the number of equations, then the kinematic isotropic
condition is not achievable at the design referenceK 2

v 5
Q
˙

T JT JQ
˙

Q
˙

T AAT Q
˙ (11)

point with the chosen drive train configuration. Thus,
special geometric arrangement of the EOLC is re-

The value of Kv depends on the position as well as quired and/or a new design reference point should
direction of motion of the end-effector. The extreme be recommended to yield an isotropic condition. If
values of Kv are the square roots of the eigenvalues the number of unknowns is greater than the number
of the following generalized eigenvalue problem6 of equations, then there exist some free choices among

the mechanical power transmission lines. This leads
(JT J)Q

˙
5 l(AAT )Q

˙
(12) to the following axiom:

Axiom 1: For an n-DOF GCM to possess kine-Hence, the eigenvalues of equation (12) completely
characterize the kinematic performance of a GCM at matic isotropic property, only those structure matri-

ces with the following characteristics can be chosena given end-effector position. The condition number
can be defined as the ratio of the maximal and mini- as possible drive train configurations if none of the

elements in the product of Jacobian matrix JT J is equalmal eigenvalues of equation (12). The transformation
is said to be isotropic if the condition number of the to zero at a given design reference point: (1) the num-
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none of the elements in the product of Jacobian matrix
JT J is equal to zero at a given design reference point,
only structure matrices g2 2 1, g2 2 2, and gs 2 1 can
be chosen to achieve kinematic isotropic condition.
On the other hand, if the design reference point is
chosen at u2 5 cos21(2a2/a1), then the off-diagonal
term in equation (14) is equal to zero and only struc-
ture matrices g2 2 1 and gs 2 2 can be chosen to
achieve kinematic isotropic condition.Figure 4. Typical EOLC of a two-DOF manipulator.

For the three-DOF wrist shown in Figure 1, from
ber of nonzero elements in the structure matrix A is equation (5), the product of Jacobian matrix can be
equal to or greater than n(n 1 1)/2; and (2) none of written as
the elements in the product of structure matrix AAT

is zero.

In a case in which a certain element of the product
of Jacobian matrix JT J is equal to zero at a given design JT J 5 3

1 Ca1 Ca1Ca2 2 C2 Sa1 Sa2

Ca1 1 Ca2

Ca1Ca2 2 C2 Sa1 Sa2 Ca2 1
4reference point, the corresponding element in the

product of structure matrix AAT must vanish for
equation (13) to be solvable. This leads to the follow-

(15)ing axiom:

Axiom 2: For an n-DOF GCM to possess kine-
Figure 6 shows the thirty admissible structurematic isotropic property, only those structure matri-

matrices for three-DOF GCMs3. In Figures 5 and 6,ces with the following characteristics can be chosen
matrices are arranged according to the location of theas possible drive train configurations if (i, j) element
actuators3. The letters ‘‘g’’, ‘‘s’’, and ‘‘e’’ denote theof the product of Jacobian matrix JT J is equal to zero
location of the input actuators at the 1st, 2nd, andat a given design reference point: (1) none of the
3rd joint axes, respectively, which correspond to themechanical power transmission lines in the structure
ground, shoulder, and elbow joints of a robot arm.matrix A has an effect on the (i, j) element of AAT;
The power stands for the number of actuators in-and (2) more than one mechanical power transmis-
stalled on that joint axes. Figure 7 shows the fifteension line has an effects on the (i, j) element of the
structure matrices with which kinematic isotropicproduct of structure matrix AAT but their overall ef-
conditions can be obtained for three-DOF GCMs iffects are equal to zero. For the latter case, special gear
none of the elements in the product of Jacobian matrixratio relations are required between the correspond-
JT J is equal to zero at a given design reference point.ing mechanical power transmission lines.
Note that although the number of nonzero elements

Figure 4 shows a typical EOLC of a two-DOF in structure matrices g2s 2 6 and gs2 2 3 are equal to
manipulator. The product of the Jacobian matrix can six, they can not yield kinematic isotropic condition
be written as if the (1, 3) element in JT J is not equal to zero at a

given design reference point, since the (1, 3) element
in the AAT is equal to zero. Table I shows the structureJT J 5 Fa2

1 1 a2
2 1 2a1a1 cos(u2) a2[a2 1 a1 cos(u2)]

a2[a2 1 a1 cos(u2)] a2
2

G matrices with which kinematic isotropic condition
can be obtained if certain elements in the product of

(14) Jacobian matrix JT J is equal to zero.
Hence, Axioms 1 and 2 provide a rational wayFigure 5 shows the four admissible structure ma-

to select drive train configurations for GCMs suchtrices for two-DOF GCMs. It can be shown that if
that kinematic isotropic property can be made ac-
cording to the predetermined geometric characteris-
tics of the EOLC. With the form of available structure
matrices, proper drive train configuration(s) can then
be selected in the preference of actuator locations
and mechanical simplicity of the mechanical powerFigure 5. Admissible structure matrices for two-DOF gear

coupled manipulator. transmission lines.
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Figure 6. Admissible structure matrices for three-DOF gear coupled manipulator.

Figure 7. Structure matrices for three-DOF gear coupled manipulators with nonzero (JTJ)i,j .
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Table I. Structure matrices for three-DOF gear coupled manipulators with
certain zero (JT J)i,j .

5. DRIVE TRAIN CHARACTERISTICS gear reductions. The first-stage gear reduction, which
is common to all mechanical power transmission

From equation (13), structure matrix A determined lines, provides the overall reduction to the system.
from the kinematic isotropic condition for an n-DOF The second-stage gear reduction provides the neces-
GCM can be written as sary condition for a kinematic isotropic transfor-

mation.
«11 «12 ? ? ? «1n

From equation (8), the elements in the product«21 . . .
A 5 K 21

v
.
.
. of structure matrix AAT contributed by input actuator.

.

. ‘‘k’’ for an n-DOF GCM with n mechanical power
transmission lines can be written as

«n1 ? ? ? «nn

3 4 (16)

where «i,j is a function of the Jacobian matrix and can (AAT)j,j 5 On

k51
a2

i,k (b2
j,i)k (17)

be determined from the kinematic isotropic condi-
tion. Hence, from equation (16), the train value in each

andmechanical power transmission line can be thought of
as a product of two-stage gear reductions, i.e., K 21

v

and «i,j9s. This leads to the following axiom: (AAT)j,m 5 On

k51
a2

i,k (bj,i)k (bm,i)k (18)

Axiom 3: For GCMs, kinematic isotropic condi-
tion can be made at a given design reference point From equations (13), (17), and (18), it is clear that a

sign change of the first nonzero element of the k-through proper choice of drive train configuration.
The train value for each mechanical power transmis- th mechanical power transmission line, ai,k, does not

change the kinematic isotropic condition. However,sion line can be thought of as a product of two-stage
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from equation (8), a sign change of the first nonzero the second part of the generalized inertia forces can
be considered as the sum of the inertia contributionelement of the k-th mechanical power transmission

line, ai,k, results in sign changes of all nonzero ele- due to input links and that due to all the other second-
ary links. However, the inertia contribution due toments in column k of structure matrix A, accordingly.

This leads to the following axiom: other secondary links can be neglected since they are
usually one order of magnitude smaller than that due
to the input links4. Thus, the inertia contribution dueAxiom 4: For n-DOF GCMs with n mechanical

power transmission lines, kinematic isotropic condi- to input links dominates the inertia contribution of
the second part of the generalized inertia forces. Lettion can be made at a given design reference point

through proper choice of gear ratios. The sign change Mi be the inertia matrix of the second part of the
generalized inertia forces due to input links. Chenof the first nonzero element of the k-th column of

structure matrix A corresponds to a change of the and Tsai7 showed that the inertia matrix Mi can be
written asdirection of applied torque and will not change the

kinematic isotropic condition. A sign change of the
first nonzero element of the k-th column of structure Mi 5 lmAUAT (20)
matrix A results in sign change of the remaining non-
zero elements in that column. Therefore, there are 2n where
sets of solutions to equation (8) corresponding to the
sign change of the first nonzero element of the n

lm 5 Spn

i51

liD1/n

(21)columns of a structure matrix A.

and li is the inertia of the ith input link, U is a diagonal
6. OPTIMIZATION OF DYNAMIC PERFORMANCE scaling matrix with its (i, i) element equal to li/lm and

its determinant equal to unity.From equation (16), it can be shown that there are
From equations (16) and (20), the inertia matrixinfinite sets of gear ratios that can be used in structure

Mi can be rewritten asmatrix A so that kinematic isotropic condition is satis-
fied if the generalized velocity ratio is treated as a

d11 d12 ? ? ? d1nscaling factor. This leaves additional room for the
optimization of dynamic performance. Hence, this d12 . . .

Mi 5 K 22
v

.

.

.
5 K 22

v D (22)scaling factor can be used to optimize the accelera- .
.
.tion capacity.

d1n ? ? ? dnn

3 4
6.1. Acceleration Capacity

where di,j is function of the inertia of input actuatorsThe equations of motion for an n-DOF GCM can be
and the second stage gear reduction «i,j9s. Taking de-written in the joint-space as
terminant of both sides of equation (13), we have

MQ
¨

1 Q
˙

TCQ
˙

1 G 5 Aj (19)
det(AAT ) 5 k22n

v det(JT J) (23)

where M is an n by n inertia matrix, Q
˙

TCQ
˙

is the
From Eqs. (20), (22), and (23), it can be shown thatgeneralized inertia force contributed by the Coriolis

and centrifugal effects, and G is the generalized active
det(D) 5 l n

m det(JT J) (24)force contributed by gravitational effect.
In formulating the generalized inertia forces of

Let Mp be the inertia matrix of the first part ofGCMs, Chen et al.2 suggested the following approach.
the generalized inertia forces, then the inertia matrixFirstly, all the secondary links are treated as being
M can be written asrigidly attached to their associated primary links and

the generalized inertia forces due to the resultant
M 5 Mp 1 Mi (25)equivalent open-loop chain are formulated. Secondly,

the generalized inertia forces contributed by rotations
of the secondary links with respect to their associated For the cases in which the Coriolis, centrifugal

and gravitational effects are insignificant, Chen andprimary links are formulated. The inertia matrix of
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Tsai4 showed that acceleration capacity (A.C.) can be
K 4

v 5
det(D)

det(Mp)
(32)used as an index to indicate the ability of a manipula-

tor to respond to a given set of input torques. The
larger the acceleration capacity, the more responsive Substituting equation (24) in equation (32) we have
the system is. The acceleration capacity can be writ-
ten as4

K 4
v 5

l 2
m det(JT J)
det(Mp)

(33)

A.C. 5
[det(JT J) det(AAT )]1/2

det(M)
(26)

It can be shown that equation (33) provides the opti-
mal condition for minimum Q since the sign of the
second derivative of equation (31) with respect to KvSubstituting equations (23) and (25) into equation
evaluated at the stationary point is always positive.(26) yields
Taking determinant of both sides of equation (22)
and substituting the resulting equation into equation

A.C. 5 det(JT J)Q21 (27) (32) yields

where det(Mp) 5 det(Mi) (34)

Q 5 K n
v det(Mp 1 Mi) (28) Hence, the optimum acceleration capacity can be

reached when the determinant of inertia matrix con-
tributed by input links is made equal to that contrib-Since the determinant of the product of Jacobian
uted by primary links for two-DOF GCMs. Frommatrix, det(JT J), is a constant at a given end-effector
equation (33), it can be seen that the generalized ve-position, acceleration capacity is a function of the
locity ratio is a function of inertia matrix Mp and thegeneralized velocity ratio and the determinant of iner-
inertia of input liks at a given design reference point.tia matrix M. Note that Mi is a function of gear ratios
Hence, the first stage gear reduction can be deter-while Mp is a function of the joint angles and link
mined once the inertia of input links are selected withmass/inertia properties. In what follows, we shall
known Mp at a design reference point. On the otherassume that adjusting gear ratios does not have a
hand, the generalized velocity ratio can be adjustedsignificant effect on the inertia matrix Mp. to a desired value by choosing the proper inertia of
input links.

Let a1 5 0.2286 m, a2 5 0.1778 m, and u2 5 112.8856.2. Two-DOF Manipulators
degrees; from equation (14), the product of the Jacob-

Let the inertia matrices Mp and Mi have the follow- ian matrix is
ing form

JT J 5 F0.05226 0.01581

0.01581 0.03161
G (35)

Mp 5 Fr11 r12

r12 r22
G (29)

Let inertia of the input links be 8.79* 1026 kg 2 m2

and Mp as
Mi 5 K 22

v Fd11 d12

d12 d22
G5 K 22

v D (30)

Mp 5 F958 29.4

29.4 107
G (1024 kg 2 m2) (36)

Substituting equations (29) and (30) into equation
(28) yields

For the case structure matrix, g2 2 2 is chosen as the
drive train configuration, and it takes the followingQ 5 det(Mp)K 2

v 1 d22 r11 2 2d12 r12 1 d11 r22 1 det(D)K 22
v

form:(31)

Taking the derivative of equation (31) with respect to A 5
1
kv
F a1,1 a1,2

a1,1(b2,1)1 0
G (37)

Kv and equating the resulting equation to zero, yields
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Q 5 det(Mp)K 3
v 1 aKv 1 bK 21

v 1 det(D)K 23
v (42)

Taking derivative of equation (42) with respect to kv

and equating the resulting equation to zero, we have

3 det(Mp)K 2
v 1 a 2 bK 22

v 2 3 det(D)K 24
v 5 0 (43)

Letting x be the square of Kv, equation (43) can be
rewritten as

x3 1 b1 x2 1 b2 x 1 b3 5 0 (44)
Figure 8. A two-DOF manipulator with optimum drive
train configuration. where

Then, from equations (33), (35), and (36), the general- b1 5
a

3 det(Mp)
(45a)

ized velocity ratio Kv can be obtained as 0.003128 (m)
and a1,1 5 68.89, a1,2 5 621.06, and (b2,1)1 5 2. Figure
8 shows one of the possible gearing configurations b2 5 2

b
3 det(Mp)

(45b)
for the two-DOF manipulator.

b3 5 2
det(D)

det(Mp)
(45c)6.3. Three-DOF Manipulators

Let the inertia matrices Mp and Mi have the follow-
ing forms: Because matrices Mp and D are all positive definite,

their determinants are all positive. Thus, from (45c),
it can be shown that there exists a positive real root
of equation (43). Taking the second derivative ofMp 5 3

r11 r12 r13

r12 r22 r23

r13 r23 r33
4 (38)

equation (42) with respect to kv, we have

­2Q
­K 2

v
5 6 det(Mp)Kv 1 2bK 23

v 1 12 det(D)K 25
v (46)

Mi 5 K 22
v 3

d11 d12 d13

d12 d22 d23

d13 d23 d33
45 K 22

v D (39)
Subtracting K 22

v times equation (43) from equa-
tion (40), we have

Substituting equations (38) and (39) into equation (25) 22 det(Mp) 1 2bK 24
v 1 4 det(D)K 26

v (47)
and taking the determinant of the resulting equa-
tion yields

The sign of equation (47) is positive since the sign
of equation (40) is always positive and the value ofdet(M) 5 det(Mp) 1 aK 22

v 1 bK 24
v 1 det(D)K 26

v (40)
equation (43) is zero. Subtracting Kv times equation
(47) from equation (46) yieldswhere

a 5 r11Mi (1, 1) 1 r22Mi (2, 2) 1 r33Mi (3, 3) 8 det(Mp)Kv 1 8 det(D)K 25
v . 0 (48)

1 2[r12Mi (1, 2) 1 r13Mi (1, 3) 1 r23Mi (2, 3)] (41a)
Thus, it is clear that the sign of equation (46), the

b 5 d11Mp (1, 1) 1 d22Mp (2, 2) 1 d33Mp (3, 3) second derivative of Q with respect to Kv, is always
positive with a positive root of equation (43). Hence,1 2[d12Mp (1, 2) 1 d13Mp (1, 3) 1 d23Mp (2, 3)] (41b)
an optimal generalized velocity ratio Kv can always be
found for three-DOF GCMs such that the accelerationand where M(i, j) denotes the cofactor of M. Substitut-

ing equation (40) into equation (28) yields capacity is optimized.
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Let the design reference point be chosen at a1 5
f/2, a2 5 2f/2 and u2 5 50 degrees. From equation
(15), the product of the Jacobian matrix is

JT J 5 3
1 0 0.6428

0 1 0

0.6428 0 1
4 (50)

Figure 9. A wrist with optimum drive train configuration.
Because the (1, 2) and (2, 3) elements of JT J are equal

Then, the optimal generalized velocity ratio kv can beto zero, from Table I, there are seven structure matri-
obtained as 0.047566 (m). Figure 9 shows one of theces that can be selected as proper gear train configu-
possible drive train arrangements with the structurerations to achieve kinematic isotropic property. For
matrix written asthe wrist mechanism, the g3 series are preferred for

their better dynamic performance from the view of
actuators’ locations. Assuming structure matrix g3 2
3 is chosen, let it have the form of equation (9). Be- A 5 21.023 3

0.766 0.4545 0.4545

0 20.7071 0.7071

0 0.7071 0.7071
4 (53)

cause the number of unknowns in structure matrix
g3 2 3 is equal to seven, one variable can be set as a
free choice. Let g 5 a1,3/a1,2 as the free choice, k13 5

Note that for the case structure matrix, g3 2 5 is(JT J)1,3, the nonzero elements in the structure matrix
chosen as the desired drive train configuration, whichA can be solved from isotropic condition and written
is commonly used in wrist mechanisms; kinematicas a1,1 5 6Ï1 2 k 2

13, a1,2 5 6k13/Ï(1 1 g2), a1,3 5
isotropic property can not be achieved if the EOLC6gk13/Ï(1 1 g2), (b2,1)2 5 2g/k13, (b2,1)3 5 1/(gk13),
has the following geometric characteristics: a1 5 f/2(b3,1)2 5 1/k13, and (b3,1)3 5 1/k13 . Note that the free
and a2 5 2 f/2.choice g defines the special relation between the

As the torque contribution ratio between joint isecond and third mechanical power transmission
and j due to input actuator k is determined, the actuallines.
drive train arrangement of each mechanical powerLet inertia of the input links be 8.79*1026 kg 2
transmission line can be constructed accordingly. Them2 and g 5 1, from equations (20) and (50), then the
arrangement of gears can be laid out according to theinertia matrix Mi can be written as
sign of nonzero elements of A. Note that for the cases
where using several gear pairs is more desirable than
using a single pair, and/or adjusting the center dis-
tance between rotational axes, idle gear(s) can be

Mi 5
1

K 2
v 3

0.0879 0 0.0565

0 0.0879 0

0.0565 0 0.0879
4 (1024 kg 2 m2) added. Several methods8,9,10 have been developed to

find the number of teeth for each gear train required
to provide a specific ratio.

(51)

7. CONCLUSIONS
Assuming inertia matrix Mp as A methodology for the drive train configurations de-

termination of GCMs is developed. It is shown that
once the geometric characteristics of EOLC are speci-
fied, the manipulator can be designed to possess kine-
matic isotropic property with optimum dynamic per-Mp 5 3

42534.31 0.0 1513279

0.0 74922.9 0.0

1513279 0.0 15666.62
4 (1027 kg 2 m2)

formance through proper choice of the drive train
configuration and gear ratios. This approach provides
a rational procedure for the design of GCMs with
desired kinematic and dynamic characteristics.(52)
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