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Admissible spring configurations for statically balanced planar
articulated manipulators have been investigated in previous
studies. However, in these spring configurations, springs are only
identified by the connection between links. The attachment angles
and distance for springs to be properly installed remain unad-
dressed. In this study, a method to determine attachment angles
and distance for springs is developed to ensure all the springs
are acting for the benefit of static balancing. Here, the gravitational
and elastic potential energies are represented in stiffness matrix
form, it is shown that term by term compatibility exists between
the first row of gravitational stiffness matrix and the first row of
the elastic stiffness matrix. In accordance with these compatibility
conditions, the admissible spring attachment angles are found to
ensure all the ground-connected springs are acting for the benefit
of gravity balancing. And the remained components below the
first row of the elastic stiffness matrix are offset by the non-
ground-connected springs. In accordance with the compatibility
between the remained components and the elastic stiffness matrix
of non-ground-connected springs, the spring attachment angles to
ensure all the non-ground-connected springs acting for the
benefit of elastic balancing are found. The determination of the
admissible spring configurations is revisited in addition to the con-
nection between links, and the attachment angles of springs are also
specified. The admissible spring configurations of statically
balanced planar articulated three- and four-link manipulators are
derived. A four-link planar manipulator is used as an example for
illustration. [DOI: 10.1115/1.4053733]
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1 Introduction
A static balanced mechanism has several advantages such as the

improvement of control and efficiency since working against
gravity is not required. Consequently, it is widely applied to
various fields, such as robots and manipulators [1,2], rehabilitation
devices [3,4], and wearable exoskeleton [5].
Over the years, several methods to achieve static balancing in

manipulators have been proposed. The counterweight method

[6,7], with direct principle, is one of the most commonly used
static balancing methods as it utilized additional counterweight to
balance the gravity. Balancing methods by adding springs on the
manipulator can be subdivided into several types: one spring-
balancing method [8,9] is through adding auxiliary parallelogram
mechanism on each link of the manipulator, and the auxiliary par-
allelogram mechanism is always vertical to the ground link,
forming a pseudobase; that is, each link can be balanced indepen-
dently by one spring; another spring-balancing method [10–12] is
to locate the center of mass by adding an auxiliary device to the
manipulator and then attaching a spring to the centers of mass to
keep the potential energy constant. Both methods [8–12] mentioned
previously need an auxiliary mechanism to be attached to the
manipulator, and then motion interference caused by additional
linkages may occur; also, the additional mass may increase the
burden of springs. In terms of the methods regarding gravity com-
pensator for three-RPS (R, P and S denote revolute, prismatic and
spherical joint) parallel robot proposed [13,14], adding springs or
gear-spring modules as gravity compensator on the robot can
balance the gravity partially.
The other commonly used spring-balancing methods without

auxiliary parallelogram mechanisms or additional devices [15–19]
are developed. Since the springs are directly attached to the manip-
ulator, it mitigates the disadvantages caused by additional linkages
of the auxiliary mechanism. To achieve perfect static balancing
without adding auxiliary mechanisms, the springs are directly
attached to the planar manipulator in the method used in this study.
To achieve static balancing, the summation of the potential

energy should be constant∑
U = constant (1)

For simplicity, Lin [17] re-expressed the potential energy in a
compatible form, in which the unit vectors of the system are sepa-
rated and the potential energy is represented in a quadratic matrix
form; Eq. (1) can thus be rewritten as

G +
∑

KS(i,j) = constant (2)

where G denotes the matrix form of the gravitational potential
energy and KS(i,j) denotes the matrix form of the elastic potential
energy. Assuming that only one spring is installed between each
pair of links, Lin [18] proposed that by arranging the equations in
potential energy matrices to satisfy Eq. (2), the admissible spring
configurations (ASCs) are determined.
Unlike Lin [18], Lee [19] allowed the installation of multiple

springs between a pair of links. Therefore, the number of ASCs pro-
posed by Lee [19] was much more than that proposed by Lin [18].
ASCs with a minimum number of springs and ASCs with a
minimum number of joints which springs span over on are further
revealed by Lee [19].
Both Lin [18] and Lee [19] proposed ASCs. However, neither

Lin [18] nor Lee [19] discussed the effect of the spring attachment
angles; that is, some of the attachment angles solutions bring about
a negative effect on balancing. Following the criteria in previous
studies [18,19], one can only know which links are attached with
springs. Yet, the springs with negative effects on balancing still
may be used, and as a result, the burden of the other springs
increases.
In this study, we first discuss the effect of the spring installation

parameters in the matrix elements. The spring installation parame-
ters (including spring attachment distance and spring attachment
angle) are expressed in a polar coordinate system. The spring
attachment angles determine the sign of the elastic stiffness
matrix components contributed by the spring, and the attachment
distance determines the magnitude of terms. The admissible
spring attachment angles are determined by the compatibility
between the corresponding stiffness matrix components and by
the assumed requirement that each spring contributes the most of
offset elastic stiffness matrix components. Spring installation
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rules are then proposed on the basis of the arrangement of the
springs with admissible spring attachment angles. Finally, ASCs
for statically balanced planar articulated manipulators are proposed,
and an example is provided.

2 Potential Energy Stiffness Matrix Representation
2.1 Spring Attachment Parameters and Coordinate System

of a Planar Articulated Manipulator. Figure 1 illustrates the
coordinate system of an n-link planar articulated manipulator,
where the Denavit–Hartenberg representation [20] is employed,
and the point spring attached to is described in the polar coordinate
system. The spring attachment parameters are: For springwith a stiff-
ness kS(i,j) attached between links i and j, the attachment parameters
include the attachment distance (aS(i,j) for proximal attached link i
and bS(i,j) for distal attached link j) and attachment angles (αS(i,j)
for proximal attached link i and βS(i,j) for distal attached link j) in
which the values in the counterclockwise rotation are positive.

2.2 Representation of Gravitational Potential Energy
Stiffness Matrix. The gravitational potential energy Ug of an
n-link planar articulated manipulator is expressed as follows:

Ug =
∑n
d=2

mdghd (3)

where g is the acceleration of gravity, md denotes the mass of link d,
and hdhwhj denotes the height of link d from the ground

hd = sdcos
∑d
t=2

ϕ − θt

( )
+
∑d−1
w=2

rwcos
∑w
t=2

ϕ − θt

( )

for n ≥ d > w ≥ 2 (4)

where sd denotes the length from the joint of link d to the mass
center of link d; rw denotes the length of link w for d>w≥ 2; and
ϕ denotes the direction of g.
Referring to Lin [17], the gravitational potential energy is then

arranged in matrix form as follows:

Ug =

r1
r2

..

.

rd

..

.

rn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

G

r1
r2

..

.

rd

..

.

rn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

The matrix G is called the gravitational stiffness matrix. As those
elements that lie on the diagonal in the matrix and the elements

below the main diagonal are all zero, only the upper triangular
matrix is considered

G =

∗ G1,2 G1,3

∗ 0
∗

. . . G1,n

0 0

0
∗

..

.

0
∗

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ (6)

According to Eqs. (3)–(5), the components of the gravitational
stiffness matrix are given as follows:

G1,2 = − m2
g

r1

s2
r2

+
g

r1

∑n
u=3

mu

( )
cos (ϕ − θ2)

G1,3 = − m3
g

r1

s3
r3

+
g

r1

∑n
u=4

mu

( )
cos (ϕ − θ2 − θ3)

..

.

G1,n = −mn
g

r1

sn
rn
cos ϕ −

∑n
t=2

θt

( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(7)

The general formula of the gravitational stiffness matrix compo-
nents is as follows:

G1,q =− mq
g

r1

sq
rq
+

g

r1

∑n
w=q+1

mw

( )
cos ϕ−

∑q
t=2

θt

( )
for n≥ q≥ 2

(8)

2.3 Representation of Elastic Potential Energy Stiffness
Matrix. For a zero-free-length spring attached between links i
and j (expressed as S(i,j)), the elastic potential energy US(i,j) is as

US(i,j) =
1
2
kS(i,j)l

2
(i,j) (9)

where kS(i,j) is the spring stiffness of S(i,j); l(i,j) is the elongation of
the spring is determined by the positions of links articulated
between links i and j

l(i,j) =
⇀
b(i,j) − ⇀a(i,j) +

∑j−1
t=i+1

rt x̂t

∣∣∣∣∣
∣∣∣∣∣ (10)

The square of the spring elongation is expressed as follows:

l2(i,j) =
⇀
b S(i,j) − ⇀a S(i,j) +

∑j−1
t=i+1

rtx̂t

( )

· ⇀
b S(i,j) − ⇀a S(i,j) +

∑j−1
t=i+1

rtx̂t

( )
(11)

Fig. 1 Coordinate system of an n-link manipulator and spring attachment parameters
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Referring to Lin [17], the elastic potential energy Eq. (9) can also
be expressed in matrix form as

US(i,j) =

r1
r2

..

.

ri

..

.

rj

..

.

rn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

KS(i,j)

r1
r2

..

.

ri

..

.

rj

..

.

rn

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(12)

The matrix KS(i,j) is called the elastic stiffness matrix. Because the
elements that lie on the diagonal in the matrix are constant. Accord-
ing to Eq. (2), static balancing is achieved when the summation of
the matrices is a constant. Therefore, the constant elements on the
diagonal can be neglected and the elements below the main diago-
nal are all zero, only the upper triangular matrix is considered

KS(i,j) =

∗ KS(i,j)
i,i+1 KS(i,j)

i,i+2 . . . KS(i,j)
i,j

∗ KS(i,j)
i+1,i+2 . . . KS(i,j)

i+1,j

∗ KS(i,j)
u,v

..

.

∗ KS(i,j)
j−1,j
∗

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)

According to Eqs. (9), (11), and (12), the components of the
elastic stiffness matrix of spring S(i,j) are given as follows:

KS(i,j)
i,j = −kS(i,j)

aS(i,j)
ri

bS(i,j)
rj

cos αS(i,j) − βS(i,j) −
∑j

t=i+1

θt

( )
(14a)

KS(i,j)
i,v = −kS(i,j)

aS(i,j)
ri

cos αS(i,j) −
∑v
t=i+1

θt

( )
for v < j (14b)

KS(i,j)
u,j = kS(i,j)

bS(i,j)
rj

cos −βS(i,j) −
∑j

t=u+1

θt

( )
for u > i (14c)

KS(i,j)
u,v = kS(i,j) cos −

∑v
t=u+1

θt

( )
for u > i; v < j (14d)

Four types of general formulas are depended on the location of
elastic stiffness matrix components in the matrix. The distribution of
the elastic stiffnessmatrix components in thematrix is shown inFig. 2.
To achieve static balancing, Eq. (2) must be satisfied, where the

elastic stiffness matrix components are arranged to offset the corre-
sponding gravitational stiffness matrix components.

3 Springs for Static Balancing
3.1 Admissible Ground-Connected Spring Attachment

Angles for Balancing Gravitational Energy. To offset the gravi-
tational stiffness matrix components, the sign of the elastic stiffness
matrix components must be opposite to the sign of the gravitational
stiffness matrix components. Two assumptions are made in this
study, the first assumption is that the spring attachment distances
aS(1,j), bS(1,j) and spring stiffness kS(1,j) are positive. The second
assumption is that the direction of the gravitational acceleration g
is toward the ground; for the second assumption, the direction is
given as

ϕ =
3π
2

(15)

According to Eqs. (14a)–(14d ), it is found that the spring attach-
ment anglesαS(i,j) and βS(i,j) determine the signs of the elastic stiffness
matrix components, and the spring attachment distances aS(1,j), bS(1,j)
and spring stiffness kS(1,j) determine themagnitude of the elastic stiff-
ness matrix components.
According to Eq. (6), the gravitational stiffness matrix compo-

nents are distributed in the first row of the matrix, and according
to Eq. (13), the corresponding elastic stiffness matrix components
distributed in the first row must be KS(1,j)

1,j and KS(i,j)
i,v for v < j (i.e.,

Eqs. (14a) and (14a) with i= 1), which must be contributed by a
ground-connected spring S(1,j).
Therefore, according to Eqs. (8), (14a), and (15), if the sign of

components are opposite, in other words, the elastic stiffness
matrix component KS(1,j)

1,j is proposed to offset the gravitational stiff-
ness matrix components when

αS(1,j) − βS(1,j) =
π

2
(16)

and according to Eqs. (8), (14b) and (15) the elastic stiffness matrix
component KS(i,j)

i,v is proposed to offset the gravitational stiffness
matrix components when

αS(1,j) =
π

2
(17)

For a ground-connected spring S(1,j), if both the elastic stiffness
matrix components KS(1,j)

1,j and KS(i,j)
i,v are proposed to simultaneously

offset the gravitational stiffness matrix components, substitute Eqs.
(17) into (16), and βS(1,j) is solved; the spring attachment angles of
the ground-connected spring are then determined as follows:

(αS(1,j), βS(1,j)) =
π

2
, 0

( )
(18)

A spring installed between a pair of adjacent links is called a
mono-articulated spring, and a spring that spans over multiple artic-
ulated joints is called a multi-articulated spring. A mono-articulated
spring contributes only one elastic stiffness matrix component
KS(1,2)
1,2 . Therefore, for the mono-articulated ground-connected

spring S(1,2), Eq. (16) is the only constraint for the spring attachment
angle. The spring attachment angles of the mono-articulated
ground-connected spring S(1,2) satisfy

αS(1,2) − βS(1,2) =
π

2
(19)

The spring attachment angles of the ground-connected springs
are then determined. The system of ground-connected springs
attachment angles is as follows.
S1: To ensure that most components offset the gravitational stiff-

ness matrix components, the attachment angles of a multi-
articulated ground-connected spring S(1,j) for j> 2 are (π/2, 0).
And the attachment angles of the mono-articulated ground-
connected spring S(1,2) satisfy αS(1,2)− βS(1,2)= π/2.
According to Fig. 2, the elastic stiffness matrix components of a

ground-connected spring are not only distributed in the first row of
the matrix. The excess elastic stiffness matrix components belowFig. 2 Distribution of elastic stiffness matrix components
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the first row are also remained by the ground-connected springs.
Therefore, non-ground-connected springs must be installed to
offset the elastic stiffness matrix components that remained by
ground-connected springs.

3.2 Excess Elastic Stiffness Matrix Components Remained
by Ground-Connected Springs. Two types of excess elastic stiff-
ness matrix components are remained by ground-connected springs:
KS(i,j)
u,j for u > 2 and KS(i,j)

u,v for u> 2; v< j . Substituting the spring
attachment angles in Eqs. (18) into (14c) and (14d), the excess
elastic stiffness matrix components are given as

KS(1,j)
u,j = kS(1,j)

bS(1,j)
rj

cos −
∑j

t=u+1

θt

( )
for u > 2 (20a)

and

KS(1,j)
u,v = kS(1,j) cos −

∑v
t=u+1

θt

( )
for u > 2; v < j (20b)

To satisfy Eq. (2), non-ground-connected springs should be
installed to offset the excess elastic stiffness matrix components.

3.3 Admissible Non-ground-Connected Spring Attachment
Angles for Balancing Excess Elastic Energy. According to Eqs.
(14a)–(14d ) and Fig. 2, for non-ground-connected springs, up to
four types of elastic stiffness matrix components exist:
KS(i,j)
i,j KS(i,j)

i,v<j, K
S(i,j)
u>i,j and KS(i,j)

u>i,v<j; they correspond to the excess
elastic stiffness matrix components.
To offset the excess elastic stiffness matrix components that the

ground-connected spring remained, the sign of the elastic stiffness
matrix components of the non-ground-connected spring must be
opposite to the sign of the excess elastic stiffnessmatrix components.
Comparing Eq. (14a) with Eqs. (20a) and (20b), the elastic stiff-

ness matrix component KS(i,j)
i,j of a non-ground-connected spring is

proposed to offset the excess elastic stiffness matrix components
when

αS(i,j) − βS(i,j) = 0 (21)

Similarly, comparing Eqs. (14b) and (14c) with Eqs. (20a) and
(20b), the elastic stiffness matrix components KS(i,j)

i,v and KS(i,j)
u,j are

individually proposed to offset the excess elastic stiffness matrix
components when

αS(i,j) = 0 (22)

and

βS(i,j) = π (23)

The sign of KS(i,j)
u,v is always identical to the sign of the excess

elastic stiffness matrix components. In other words, the elastic stiff-
ness matrix component KS(i,j)

u,v of a non-ground-connected spring
cannot offset the excess elastic stiffness matrix components.
If the elastic stiffness matrix components of a non-ground-

connected spring KS(i,j)
i,j , KS(i,j)

i,v , and KS(i,j)
u,j are all proposed to

offset the excess elastic stiffness matrix components that the
ground-connected spring remained, according to Eqs. (21)–(23),
the solution is contradictory. A non-ground-connected spring with
up to two types of elastic stiffness matrix components to balance
the excess elastic stiffness matrix components is ideal. If KS(i,j)

i,j
and KS(i,j)

i,v are offset elastic stiffness matrix components, according
to Eqs. (21) and (22), the spring attachment angles satisfy

(αS(i,j), βS(i,j)) = (0, 0) (24)

If KS(i,j)
i,j and KS(i,j)

u,j are offset elastic stiffness matrix components,
according to Eqs. (21) and (23), the spring attachment angles satisfy

(αS(i,j), βS(i,j)) = (π, π) (25)

If KS(i,j)
i,v and KS(i,j)

u,j are offset elastic stiffness matrix components,
according to Eqs. (22) and (23), the spring attachment angles satisfy

(αS(i,j), βS(i,j)) = (0, π) (26)

For a mono-articulated non-ground-connected spring S(i,i+1),
which contributes only one elastic stiffness matrix component
KS(i,i+1)
i,i+1 , Eq. (21) is the only constraint when the KS(i,i+1)

i,i+1 is
an offset elastic stiffness matrix component. The spring
attachment angles of the mono-articulated non-ground-connected
spring satisfy

αS(i,i+1) − βS(i,i+1) = 0 (27)

The systems of non-ground-connected springs attachment angles
are as follows:
S2: To ensure that the most of the components offset the

excess elastic stiffness matrix components that remained by
ground-connected springs, the attachment angles of a multi-
articulated non-ground-connected spring S(i,j) for i> 2; j− i > 1
must be (0, 0), (π, π), or (0, π). And the attachment angles of a
mono-articulated non-ground-connected spring S(i,i+1) need to
satisfy αS(i,i+1)− βS(i,i+1)= 0.

4 Admissible Spring Configurations With Spring
Attachment Angles
4.1 Installation Rules for Ground-Connected Spring. To

achieve static balancing, each nonzero gravitational stiffness matrix
component must correspond to an elastic stiffnessmatrix component,
where the gravitational stiffness matrix componentG1,j can be offset
by the elastic stiffness matrix component KS(1,j)

1,j contributed by the

spring S(1,j) or the elastic stiffnessmatrix componentKS(1,j+1)
1,j contrib-

uted by the spring S(1,j+1). The general rules for installing ground-
connected springs for an n-link articulatedmanipulator are as follows:
R1–1: To offset G1,n, at least one ground-connected spring S(1,n)

with (π/2, 0) must be installed.
R1–2: To offset G1,j for n> j> 2, at least one ground-connected

spring S(1,j) or S(1,j+1) with (π/2, 0) must be installed.
According to the system of a mono-articulated ground-connected

spring (S1), the rule for balancing G1,2, which can be balanced by a
mono-articulated ground-connected spring, is as follows:
R2: To offset G1,2, at least one multi-articulated ground-

connected spring S(1,3) with (π/2, 0) or a mono-articulated ground-
connected spring S(1,2) with attachment angles that satisfy αS(1,2)−
βS(1,2)= π/2 must be installed.

4.2 Installation Rules for Non-ground-Connected Spring.
The excess elastic stiffness matrix components that remained
by a ground-connected spring S(1,j) are KS(1,j)

u,j for u > 2 and
KS(1,j)
u,v for u > 2 and v < j. Referring to the distribution of elastic

stiffness matrix components in Fig. 2, we note that the elastic stiff-
ness matrix components in column j differ from those in column v.
Thus, the excess elastic stiffness matrix components that remained
by all ground-connected springs differ from column to column;
however, in the same column, the excess elastic stiffness matrix
components are the same.
Referring to S2, the non-ground-connected spring has spring

attachment angles (0, 0), (π, π), and (0, π), the non-ground-con-
nected spring S(i,j) with spring attachment angles (0, 0) can
provide elastic stiffness matrix components, KS(i,j)

i,j and KS(i,j)
i,j−1 , to

fully offset the excess elastic stiffness matrix components at the cor-
responding location in the matrix.
For the same reason, the non-ground-connected spring S(i,j) with

spring attachment angles (π, π) can provide elastic stiffness matrix
components, KS(i,j)

i,j and KS(i,j)
u,j for u > i; the non-ground-connected
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spring S(i,j) with spring attachment angles (0, π) can provide elastic
stiffness matrix components, KS(i,j)

i,j−1 and KS(i,j)
u,j for u > i, which can

fully offset the excess elastic stiffness matrix components at the cor-
responding location in the matrix.

Each excess elastic stiffness matrix component must correspond
to an offsetting elastic stiffness matrix component contributed by
non-ground-connected springs. The general rules for installing
non-ground-connected springs are as follows:

Table 1 ASCs of three- and four-link manipulators with minimum number of springs

N Spring configuration matrices with minimum number of springs

3
∗ 0 1

π
2,0( )

∗ 1α−β=0

∗

⎡
⎣

⎤
⎦

∗Lee

4

∗ 1α−β=
π
2 0 1

π
2,0( )

∗ 1α−β=0 1(π,π)

∗ 0

∗

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

∗Lee ∗ 1α−β=
π
2 0 1

π
2,0( )

∗ 0 1(0,0)
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Table 2 ASCs of three- and four-link manipulators with nonminimum number of springs
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R3-1: To offset the excess components located at (2, n), at least
one non-ground-connected spring S(2,n) with attachment angles (0,
0) or (π, π) should be installed.
R3-2: To offset the excess components located at (2, j) for n> j >

2, at least one non-ground-connected spring S(2,j) with attachment
angles (0, 0) or (π, π) spring S(2,j+1) with attachment angles (0, 0)
or (0, π) must be installed.
R3-3: To offset the excess components located at (i, n) for i> 2, at

least one non-ground-connected spring S(i,n) with attachment angles
(0, 0) or (π, π) or spring S(u,n) for i > u> 1 with attachment angles (π,
π) or (0, π) must be installed.
R3-4: To offset the excess components located at (i, j) for i>2 ;j<n,

at least one non-ground-connected spring S(i,j) with attachment angles
(0, 0) or (π, π), spring S(i,j+1) with attachment angles (0, 0) or (0, π), or
spring S(u,j) for u< i with attachment angles (π, π) or (0, π) must be
installed.
According to the system of a mono-articulated non-ground-con-

nected spring (S2), the installation rules for a mono-articulated
non-ground-connected spring S(i,i+1) are as follows:
R4-1: To offset the excess components located at (2, 3), at least

one multi-articulated non-ground-connected spring S(2,4) with

attachment angles (0, 0) or (0, π) or one mono-articulated
non-ground-connected spring S(2,3) with attachment angles satisfy-
ing αS(2,3)− βS(2,3)= 0 must be installed.
R4-2: To offset the excess components located at (n− 1, n), at

least one multi-articulated non-ground-connected spring S(u,n) for
n> u> 1 with attachment angles (π, π) or (0, π) or one mono-
articulated non-ground-connected spring S(n−1,n) with attachment
angles satisfying αS(n−1,n)− βS(n−1,n)= 0 must be installed.
R4-3: To offset the excess components located at (i, i+ 1) for n> i

> 2, at least one multi-articulated non-ground-connected spring S(i,i
+2) with attachment angles (0, 0) or (0, π), spring S(u,i+1) for i > u> 1
with attachment angles (π, π) or (0, π), or one mono-articulated
non-ground-connected spring S(i,i+1) with attachment angles satisfy-
ing αS(i,i+1)− βS(i,i+1)= 0 must be installed.

4.3 Admissible Spring Configurations. Referring to the rules
mentioned previously, we arrange the springs with admissible
spring attachment angles determined in Sec. 3; consequently, the
statically balanced spring configurations are determined.
The ASCs with a minimum number of springs of three- and four-

link manipulators are listed in Table 1, and ASCs with a nonmini-
mum number of springs are listed in Table 2. The spring configura-
tions proposed by Lee [19] are indicated using superscripts.
Compared to the ASCs in this paper with the spring configurations
proposed by Lin and Lee [18,19], besides knowing which links are
attached with spring; here, the admissible attachment angles of each
spring are marked.

4.4 A Four-Link Planar Articulated Manipulator
Illustrative Example. Take a four-link planar articulated
manipulator as an example. Figure 3 illustrates the spring installa-
tion for a statically balanced four-link planar articulated manipula-
tor. The mass and dimensions are tabulated in Table 3, and a spring
configuration matrix in Table 1 is taken for further illustration,
where

Λ =

∗ 1α−β=
π
2 0 1

π
2,0( )

∗ 0 1(0,0)

∗ 1α−β=0

∗

⎡
⎢⎢⎣

⎤
⎥⎥⎦ (28)

According to R2 and R4-1, the attachment angles of the mono-
articulated springs S(1,2) and S(3,4) are set as follows:

(αS(1,2), βS(1,2)) =
π

2
, 0

( )
(29)

(αS(3,4), βS(3,4)) = (π, π) (30)

According to Eq. (2), the summations of the gravitational and
elastic stiffness matrices components are zero. According to Eqs.
(8) and (14a), the equation for components locating at (1,4) is as

Fig. 3 Spring installation of a statically balanced four-link
planar articulated manipulator: (a) spring attachment angles
and (b) spring attachment distances

Table 3 Mass and dimensions of the example manipulator

j mj(kg) rj(m) s4(m)

1 ‒ 1.000 ‒
2 0.400 0.300 0.150
3 0.320 0.240 0.120
4 0.350 0.360 0.180

Table 4 Spring stiffness and attachment distances of the
example manipulator

S(i,j) kS(i,j)(N/m) aS(i,j)(m) bS(i,j)(m)

S(1,4) 50 0.100 0.124
S(1,2) 50 0.053 0.400
S(2,4) 500 0.030 0.124
S(3,4) 800 0.200 0.102
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follows:

− m4
g

r1

s4
r4

( )
cos

3π
2
−
∑q
t=2

θt

( )

− kS(1,4)
aS(1,4)
r1

bS(1,4)
r4

cos αS(1,4) − βS(1,4) −
∑q
t=2

θt

( )
= 0 (31)

Bring the predetermined spring attachment angles (αS(1,4), βS(1,4))
= (π/2, 0) into Eqs. (31) and (32) can be simplified as

kS(1,4)
aS(1,4)
r1

bS(1,4)
r4

= m4
g

r1

s4
r4

(32a)

Likewise, to bring the predetermined spring attachment angles
into the components of elastic stiffness matrices, the equations for
components which locate in (1,3), (1,2), (2,4). (2,3) and (3,4) in
matrices are listed as follows:

kS(1,4)
aS(1,4)
r1

= m3
g

r1

s3
r3

+ m4
g

r1
(32b)

kS(1,4)
aS(1,4)
r1

+ kS(1,2)
aS(1,2)
r1

bS(1,2)
r2

= m2
g

r1

s2
r2

+ m3
g

r1
+ m4

g

r1
(32c)

kS(2,4)
aS(2,4)
r2

bS(2,4)
r4

= kS(1,4)
bS(1,4)
r4

(32d)

kS(2,4)
aS(2,4)
r2

= kS(1,4) (32e)

kS(3,4)
aS(3,4)
r3

bS(3,4)
r4

= kS(1,4)
bS(1,4)
r4

+ kS(2,4)
bS(2,4)
r4

(32f )

Equations (32a)–(32f ) can be used to solve the spring stiffness
and the attachment distances of all springs; the suitable spring stiff-
ness and attachment distances are listed in Table 4.
Figure 4 presents the gravitational energy, elastic energy, and

static balancing ability of a statically balanced four-link planar artic-
ulated manipulator in the whole workspace (note that, to present the
figure clearly, several θ2 angles are used to represent the potential
energies of the manipulator in the whole workspace).

5 Conclusion
In this study, a method for determining the ASCs for statically

balanced planar articulated manipulators was proposed. The poten-
tial energy was expressed in the form of a stiffness matrix. We
focused on the effect of each spring and discussed the relationship
between elastic stiffness matrix components and the components
being offset. Also, the compatibility between the two and how
they had an impact on the spring attachment angles are discussed.
Then, the springs with admissible spring attachment angles which
are acting for the benefit of static balancing were proposed. By

Fig. 4 The gravitational energy, elastic energy, and static balancing ability of a statically
balanced four-link planar articulated manipulator in the whole workspace
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arranging the elastic stiffness matrix components that correspond to
the gravitational stiffness matrix components, we proposed rules for
ASCs for statically balanced planar articulated manipulators; the
ASCs for three- and four-link manipulators were proposed as
well. Finally, the spring installation for a four-link statically
balanced manipulator was presented as an example.
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