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Abstract: Serially connected statically balanced manipulators with springs have been used in many
applications. However, a portion of the torques caused by springs countering each other lead to
an imbalance in gravitational torques and, therefore, are deemed as waste torques for springs to
achieve static balance. In this paper, the torque contribution of a typical spring is classified as gravity-
balancing torque and counter-torque based on the accumulated joint angle of the gravitational torque.
Then, the internal counter-torque is defined as the sum of the magnitude of the terms of these
counter-torques at each joint. Through the adjustment of spring attachment parameters, the internal
counter-torque can be minimized with preferable spring attachment parameters while maintaining a
static-balancing condition. A typical four-link manipulator with a preselected spring configuration
is shown as an illustrative example. The results show that there are 28% and 50% reductions in the
internal counter-torque at joints 2 and 3, respectively, through the adjustment of spring attachment
parameters. Hence, the waste torques in statically balanced serially connected manipulators are
reduced to the lowest quantity.

Keywords: internal counter-torque; serially connected manipulators; static balance

1. Introduction
1.1. Technical Background

Serially connected manipulators are used in many fields. For example, the da Vinci
Surgical Robot System is used for surgeries [1,2]; exoskeletons attached to human limbs
are used to treat muscular weakness in physiotherapy [3–5]; and robotic arms are used
for taking, placing, and stacking in the industry [6,7]. However, these manipulators are
hampered by the gravity effect. Several approaches involving the static-balancing method
implemented with springs have been proposed [8–10], and auxiliary linkages for properly
attaching such components have also been developed [11,12]. Lu et al. [13] introduced the
development of the static-balancing method from the 1990s to the 2010s. Kazerooni [14]
presented a statically balanced four-bar linkage. Rahman et al. [15] and Koser [16] presented
a design for a one-degree-of-freedom (DOF) balancer. Simionescu and Ciupitu [17] pre-
sented a one-DOF balancer with a movable cam and translational follower. Cho et al. [18]
developed a modular one-DOF balancer, with which several modules can be combined to
create a multi-DOF balancer. Ulrich and Kumar [19] proposed a static-balancing method for
one-DOF module by using springs with cables and appropriate pulley profiles. Agrawal
and Fattah [20] presented a static-balancing method for spatial manipulators by locating
the system center of mass. Deepak et al. [21] presented a method for producing multi-DOF
linkages without auxiliary links. Simionescu and Ciupitu [22] showed statically balanced
industrial robot arms by using helical springs. Deepak and Ananthasuresh [23] presented a
static-balancing method for a general tree-structured, planar revolute-joint linkage with
linear springs. Franchetti et al. [24] presented a self-regulating gravity-balancing mecha-
nism for variable payload. Mottola et al. [25] proposed statically balanced parallel robots
by using constant force generators. Nguyen [26] presented a gear-spring gravity-balancing
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balancer with variable payloads. Lee and Chen [27] proposed a systematic method for
determining the optimal spring configurations for planar articulated manipulators. Several
groups, such as Tschiersky et al. [28], Hsiu et al. [29], and Kuo et al. [30], have used static bal-
ancing for a range of other applications, such as shoulder orthoses, desktop monitor stands,
and laparoscope holders. The static-balancing method, when applied to manipulators, is a
useful way of eliminating the gravity effect in many robotics applications.

1.2. Related Literature

The static-balancing method has several advantages. Kamenskii and Raghu [31,32] re-
vealed that this method may lower the system’s natural frequencies, reducing its vibration
and, therefore, enhancing its mechanism functions. Kazerooni [14] presented a method
for the elimination of gravity forces (without any counterweights), in which smaller actua-
tors and, consequently, smaller amplifiers were chosen for the manipulator. Liu et al. [33]
showed that with the use of springs, the payload and tracking capacities can be significantly
improved, with lower power consumption. Liao et al. [34] found that spring-balancing
technology widens the load-balance range and advances system reliability and maintain-
ability. Martini et al. [35] presented a static-balancing method for closed-chain mechanisms
that can improve electrodynamic performance relative to unbalanced mechanisms. Xu
et al. [36] showed that the static-balancing method improves dynamic performance in
parallel manipulators. Based on these findings, it is clear that the static-balancing method
enhances some performance aspects of manipulators. However, in a statically balanced
manipulator, while the springs provide static balancing, they also produce counter-torque
effects between each other.

Ludovico et al. [37] presented a design approach for noncircular pulleys to generate
the torque required in a static-balancing mechanism. Coelho et al. [38] investigated torque
performance in two-DOF open-loop mechanisms. Vezvari et al. [39] developed a method
for generating the necessary torque to achieve static balance in a planar parallel robot with
five revolute joints (5R) performing point-to-point motions. Arakelian et al. [40] presented
a method for minimizing the torque in two-DOF serial manipulators based on minimum
energy considerations and optimal mass redistribution. De Jong et al. [41] published a
design for a statically balanced four-bar mechanism with less torque accompanying higher
preloading. These studies showed the significance of counter-torque effects, which should
be reduced. However, these studies focused on the torque necessary for static balance
and considered the counter-torque effects only for specific cases. The counter-torque effect
of springs in statically balanced manipulators, in general, has not yet been evaluated.
Large counter-torque effects would reduce the benefits of the static-balancing method.
Therefore, in this paper, we evaluated the counter-torque effect of springs. In the context of
systematic balancing methods, which allow for a range of spring-attachment conditions, in
this research, we aimed to reduce counter-torque effects by adjusting spring installation in
statically balanced serially connected manipulators.

The structure of this paper is as follows: In Section 2, we derive the formulae for
the torque contributions caused by the gravity of a link and spring at the joint of an n-
link manipulator. In Section 3, the internal counter-torque is introduced and defined by
assessing whether the torque contribution caused by springs has the same characteristics
as the gravitational torque contribution. In Section 4, we propose a process for minimizing
internal counter-torque in a four-link statically balanced manipulator that is maintained
by adjusting the attachment points of the springs. We then present our findings regarding
the internal counter-torque at joints using preselected and adjusted spring configurations.
Finally, we present our conclusions in Section 5.

2. Torque Representation at a Typical Joint

For a statically balanced manipulator, it would be ideal to use the springs’ torque
contribution to balance the gravitational torque contribution as much as possible. However,
when springs counter one another, they also produce internal counter-torques. These
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torques can be regarded as inefficient for the system. To evaluate the internal counter-
torque between springs, it is necessary to formulate the torque contributions of the gravity
of the links and springs.

2.1. Torque Contribution Caused by Gravity of a Typical Link at Joint u

Figure 1 shows an n-link serially connected manipulator with revolute joints only. The
variables xu and yu are the x- and y-axis coordinates of link u. A typical joint, joint u, is
between link u and link u + 1 and is associated with joint angle θu, which is the angle from
the x-axis coordinate of link u to the x-axis coordinate of link u + 1. T(θ) is a vector for
transforming the coordinates to the coordinate system of the ground link:

T(θ) =
(

cos θ
sin θ

)
(1)
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Pk is the position vector from joint 1 on the ground link to the mass center of a moving
link k, and transforming the coordinate system of the links in the position vector to that of
the ground link can be expressed as follows:

Pk = r2T(Θ2,1) + r3T(Θ3,1) + . . . + rk−1T(Θk−1,1) +
1
2

rkT(Θk,1) (2)

where rk is the length of link k. Figure 2 shows that Θv,1 is the accumulated joint angle of
the joints between link v − 1 and link 1, which can be expressed as

Θv,1 = θv−1 + θv−2 + . . . + θ1 (3)
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Additionally, the position vector can be rewritten as

Pk =
k

∑
v=2

cvrvT(Θv,1) (4)

where cv is the coefficient of the links. For the position vector of link k, only ck is 0.5; the
other coefficients are 1.



Machines 2023, 11, 200 4 of 15

Based on the vector for transforming the coordinate system and position vector, the
potential energy of a typical link, link k, can be expressed as

Ug = −mkgT(270◦)·Pk (5)

where mk is the mass of link k, and g is the constant of gravitational acceleration. By substi-
tuting Equation (4) into Equation (5), the gravitational potential energy can be rewritten
as

Ug = −mkgT(270◦)·
k
∑

v=2
cvrvT(Θv,1)

= −mkg
k
∑

v=2
cvrv cos(Θv,1 − 270◦)

(6)

Equation (6) shows that the gravitational potential energy of link k is a function of
the set of the accumulated joint angles of the joint between link 2 and link 1, extended
sequentially to include all the joints between link k and link 1, i.e., Θ2,1, Θ3,1, . . . , Θk,1.

After deriving the formula for the potential energy from the gravity of link k, the
torque contribution caused by this potential energy at joint u, according to Lagrangian
mechanics, can be expressed as

τu,g =
∂Ug

∂θu
(7)

If joint u is the joint between links u and u + 1, link k can be defined in relation to joint
u as two potential cases: (a) preceding link u (k ≤ u) and (b) succeeding link u (k > u). In
case (a), the gravitational potential energy of link k is a function of the set of accumulated
joint angles of all the joints from 1 to k, from those between links 2 and 1 to those between
links k and 1. Because k is not greater than u when k is equal to u, the set of the accumulated
joint angles Θ2,1, Θ3,1, . . . , Θu,1 is not a function of joint angle θu; therefore, the torque
contribution at joint u is zero.

τu,g = 0 f or k ≤ u (8)

In case (b), the gravitational potential energy is a function of the set of the accumulated
joint angles Θ2,1, Θ3,1, . . . , Θk,1. Because k is greater than u, that portion of the energy is a
function of the accumulated joint angles of all the joints from 1 to u, from those between
links 2 and 1 to those between links u and 1, i.e., Θ2,1, Θ3,1, . . . , Θu,1. This is not a function
of joint angle θu, so the torque contribution at joint u of this portion of the energy is zero.
The remaining portion of the energy is a function of the accumulated joint angles of all
the joints from 1 to k, from those between links u + 1 and 1 to those between links k and
1, i.e., Θu+1,1, . . . , Θk,1. This is a function of joint angle θu. Substituting Equation (6) into
Equation (7), we find that the torque contribution at joint u of all the links succeeding link
u can be expressed as

τu,g =
n

∑
k=u+1

−mkg
k

∑
v=u+1

cvrv sin(Θv,1 − 270◦) (9)

It is worth noting that Equation (9) shows the torque contribution to be a function of
the set of the accumulated joint angles of all the joints from 1 to n, from those between links
u + 1 and 1 to those between links n and 1, i.e., Θu+1,1, . . . , Θn,1.

2.2. Torque Contribution Caused by Spring si,j at Joint u

Figure 3 shows a typical spring, si,j, in an n-link manipulator. It is assumed that there
is at most one spring between any two links. The spring is connected to links i and j,
which we define as the preceding and succeeding links, respectively. Further, the spring is
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connected via a pulley-and-cable arrangement, such that it is a zero-free-length spring [42].
The potential energy of the spring is expressed as

Us =
1
2

ki,jLi,j·Li,j (10)

where ki,j is the stiffness of the spring, and Li,j is its displacement from the preceding-link
attachment point to the succeeding-link attachment point of the spring; the latter is also
the elongation of the spring because of its zero-free-length characteristic. The spring’s
displacement is represented as the position vector from joint i to the preceding attachment
point of the spring, the vector of the links between the spring’s two attachment points,
and the position vector from joint j − 1 to the succeeding attachment point. Transferring
these vectors to the coordinate system of the ground link, the spring’s displacement can be
expressed as

Li,j = −ai,jT
(
Θi,1 + αi,j

)
+
[
ri+1T(Θi+1,1) + . . . + rj−1T

(
Θj−1,1

)]
+ bi,jT

(
Θj,1 + βi,j

)
(11)

where ri+1 to rj−1 are the lengths of the links between the two attached links (from link i
+ 1 to link j − 1); ai,j is the length of the preceding link between joint i and the preceding
attachment point of the spring; and bi,j is the length of the succeeding link between joint j
− 1 and the succeeding attachment point of the spring. These two lengths are a positive
constant. The angle αi,j is the angle between link i and the preceding attachment point
of the spring; βi,j is the angle between link j to the succeeding attachment point of the
spring. These two angles are constant. The angle Θi,1 is the accumulated joint angle of
all the joints between links i and 1; Θq,1 is the accumulated joint angle of all the joints
from those between links i + 1 and 1 to those between link j − 1 and link 1; and Θj,1 is the
accumulated joint angle of all the joints between links j and 1. Substituting Equation (11)
into Equation (10), we find that the potential energy of the spring can be rewritten as

Us = Wi
i,j +

j−1

∑
v=i+1

Wv
i,j + Ci,j (12)

where Wi
i,j is the portion of the elastic potential energy that is a function of the set of the

accumulated joint angles of all the joints from those between links i + 1 and i to those
between links j and i, i.e., Θi+1,i, . . . , Θj,i.

Wi
i,j = ki,jai,jT

(
Θi,1 + αi,j

)
·
[
ri+1T

(
Θi+1,1

)
+ . . . + rj−1T

(
Θj−1,1

)
+ bi,jT

(
Θj,1 + βi,j

)]
= ki,jai,j[

j−1
∑

q=i+1
rq cos

(
Θq,i − αi,j

)
+ bi,j cos

(
Θj,i + βi,j − αi,j

)
]

(13)
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Wv
i,j is the portion of the elastic potential energy that is a function of the set of the

accumulated joint angles of all the joints from those between links v + 1 and v to those
between links j and v, i.e., Θv+1,v, . . . , Θj,v.

Wv
i,j = ki,jrvT(Θv,1)·

[
rv+1T(Θv+1,1) + . . . + rj−1T

(
Θj−1,1

)
+ bi,jT

(
Θj,1 + βi,j

)]
= ki,jrv[

j−1
∑

q=v+1
rq cos

(
Θq,v − αi,j

)
+ bi,j cos

(
Θj,v + βi,j

)
]

(14)

Ci,j is the portion of the elastic potential energy that is constant, i.e., it is not a function
of any joint angle.

Ci,j =
1
2

ki,j(a2
i,j +

j−1

∑
q=i+1

r2
q + b2

i,j) (15)

Having derived the formula for the potential energy of spring si,j, we can express the
torque contribution of the potential energy of the spring at joint u as

Tu,s =
∂Us

∂θu
(16)

Spring si,j can be defined in relation to joint u, which is connected to links u and u +
1 as two potential cases: (a) its connected links, i.e., links i and j, both either precede or
succeed link u (i < j ≤ u or j > i > u); and (b) link i precedes link u, and link j succeeds it (i
≤ u < j). The energy, which is constant, is not a function of the joint angle θu, as shown in
Equation (15); the torque contribution of this energy is zero for both cases. In case (a), the
energy is a function of the set of accumulated joint angles Θi+1,i, . . . , Θj,i and Θv+1,v, . . . ,
Θj,v, as shown in Equations (13) and (14). When the links to which the spring is attached
precede link u, i.e., i < j ≤ u, the energy is a function of the accumulated joint angles of all
the joints between the links that precede link u. This energy is not a function of joint angle
θu. When the links to which the spring is attached succeed link u, i.e., j > i > u, the energy is
a function of the accumulated joint angles of all the joints between the links that succeed
link u. This energy is also not a function of the joint angle θu. The torque contribution at
joint u of the potential energy of spring si,j is thus zero in case (a).

Tu,s = 0 f or i < j ≤ u or j > i > u (17)

In case (b), the preceding link of the spring precedes link u and the succeeding link
of the spring succeeds link u (i ≤ u < j). The elastic potential energy is, thus, a function of
the set of accumulated joint angles Θi+1,i, . . . , Θj,i and Θv+1,v, . . . , Θj,v. The portion of
the energy that is a function of the set of the accumulated joint angles Θi+1,i, . . . , Θu,i and
Θv+1,v, . . . , Θu,v is not a function of the joint angle θu; however, the portion of the energy
that is a function of the set of accumulated joint angles Θu+1,i, . . . , Θj,i and Θu+1,v, . . . ,
Θj,v is a function of this joint angle. Substituting Equations (13) and (14) into Equation (16),
we find that the torque contribution at joint u of spring si,j can be expressed as

Tu,s = ki,jai,j[
j−1
∑

q=u+1
rq sin

(
Θq,i − αi,j

)
+ bi,j sin

(
Θj,i + βi,j − αi,j

)
]

+ki,j
u
∑

v=i+1
rv

[
rq sin

(
Θq,v

)
+ bi,j sin

(
Θj,v + βi,j

)]
f or i ≤ u < j

(18)

Equation (18) is, thus, the formula for the torque contribution at joint u of spring si,j
when its preceding link is link u, or when link u is between the links holding the attachment
points of the spring.

3. Internal Counter-Torque Classified from Torque Contribution Caused by Springs

Internal counter-torque is defined as the torque caused by springs that are not used
to balance gravitational torque but to counter the torque produced by other springs. It



Machines 2023, 11, 200 7 of 15

can be regarded as waste torque that springs have to produce merely to achieve static
balance. Thus, it is desirable to minimize this torque. To determine whether the various
torques serve to balance gravitational torque or not, it is necessary to determine whether
they have the same accumulated joint angles. The gravitational torque contribution of a
typical link and a typical spring were derived in Section 2, and from this, we can derive the
classification of the springs’ torque contribution.

3.1. Classification of Torque Contribution Caused by Springs

To reiterate, the torque contribution at joint u caused by the gravity of the links
succeeding link u is a function of the set of the accumulated joint angles Θu+1,1, . . . ,
Θn,1. In Equation (18), when i = 1, the first portion of the torque contribution caused by
spring si,j is a function of the set of the accumulated joint angles Θq,1, . . . , Θj,1, which
are the angles of the joints between the links succeeding link u and link 1. This torque
contribution balances the gravitational torque contribution. The torque contribution of all
ground-attached springs (i = 1), i.e., all the springs for which the preceding link is link 1,
can be expressed as

Eu,s =
n

∑
j=u+1

k1,ja1,j[
j−1

∑
q=u+1

rq sin
(
Θq,1 − α1,j

)
+ b1,j sin

(
Θj,1 + β1,j − α1,j

)
] (19)

Equation (19) shows that this torque contribution is a function of the set of the accu-
mulated joint angles of all the joints, from those between links u + 1 and 1 to those between
links n and link 1, i.e., Θu+1,1, . . . , Θn,1, which is the same as the accumulated joint angles
in the formula for the gravitational torque contribution at joint u (Equation (9)).

In Equation (18), the first portion of the torque contribution of all ground-attached
springs is used to balance the gravitational torque, as mentioned above. However, the
second portion of this torque contribution is a function of the set of the accumulated
joint angles Θq,v, . . . , Θj,v, which are the angles of the joints between all mobile links.
These torque contributions are countered by the torque contributions of other springs.
Additionally, in Equation (18), the first and second portions of the torque contributions
of all the springs between two mobile links are a function of the set of the accumulated
joint angles Θu+1,i, . . . , Θj,i and Θq,v, . . . , Θj,v, which are also the angles of all the joints
between mobile links. These torque contributions do not balance the gravitational torque
and are defined as the counter-torque effect contribution; they can be expressed as

Iu,s =
n
∑

j=u+1
k1,j

u
∑

v=2
rv
[
rq sin

(
Θq,v

)
+ b1,j sin

(
Θj,v + β1,j

)]
+

u
∑

i=2
ki,jai,j[

j−1
∑

q=u+1
rq sin

(
Θq,i − αi,j

)
+ bi,j sin

(
Θj,i + βi,j − αi,j

)
]

+ki,j ∑u
v=i+1 rv

[
rq sin

(
Θq,v

)
+ bi,j sin

(
Θj,v + βi,j

)]
.

(20)

Static balance equations are derived by combining the gravitational torque contri-
bution (Equation (9)), the gravity-balancing torque contribution (Equation (19)), and the
counter-torque effect contribution (Equation (20)), using the same accumulated joint angles.
In Equation (20), if u is equal to 1, i.e., joint 1, there is no counter-torque effect contribution.
However, if u is larger, the number of terms in Equation (20) would be more; the counter-
torque effect contribution would become larger qualitatively if the joint is farther from the
ground. Notably, in numerical calculations, the counter-torque effect contribution does
not become larger quantitatively at the joint farther from the ground in some cases, which
depends on the workspace and spring-attachment parameters.

The counter-torque contribution shown in Equation (20) can be considered a combina-
tion of many sine functions. The summing magnitude of the counter-torque contribution is
the maximum possible value for the total counter-torque, assuming that all sine functions
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reach their maxima at the same configuration. We treated the summing magnitude of the
counter-torque contribution as an internal counter-torque, which can be expressed as

Zu =
n

∑
j=u+1

k1,j

u

∑
v=2

rv
(
rq + b1,j

)
+

u

∑
i=2

ki,jai,j(
j−1

∑
q=u+1

rq + bi,j) + ki,j

u

∑
v=i+1

rv
(
rq + bi,j

)
(21)

In this study, we assumed the center of mass (CoM) of each link to be on the link itself,
at the midpoint of the segment connecting the joints. However, we made this assumption
only to simplify the derivation. If the CoM of each link is at a generic point along its length,
this would make it too complex to derive the torque contributions of spring installations to
achieve static balance only. However, it is still possible to evaluate internal counter-torque
in a statically balanced manipulator, because the torque contributions of the springs can
also be classified according to whether or not they balance the gravitational torque.

3.2. Internal Counter-Torque of an Illustrative Four-Link Manipulator

For example, Figure 4a shows a four-link manipulator without springs. Figure 4b
shows the same manipulator with four springs, s1,4, s1,2, s2,4 and s3,4. These springs are
attached via cables and pulleys passing through connected points, allowing them to achieve
the zero-free-length characteristic in practice [43,44]. Note that the pulley radii are much
smaller than the elongation of the spring and can be disregarded. Springs s2,4 and s3,4 are
installed on links 2 and 3 and represented by red and blue colors, respectively, in Figure 4b,
to distinguish them.
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Joint 1 is between links 1 and 2. Links 2, 3, and 4 follow link 1 and are, thus, case (b).
According to Equation (9), the torque contribution at joint 1 caused by these links can be
represented as

τ1,g = −
[

1
2 m2g + m3g + m4g

]
r2 sin(Θ2,1 − 270◦)

−
[

1
2 m3g + m4g

]
r3 sin(Θ3,1 − 270◦)− 1

2 m4gr4 sin(Θ4,1 − 270◦)
(22)

Springs s2,4 and s3,4, which are attached to the links that follow link 1, are case (a), so
their torque contribution at joint 1 is zero. Springs s1,2 and s1,4, which are attached to link 1,
are case (b), and their torque contribution at joint 1 can be calculated using Equation (19):

E1,s = −k1,2a1,2b1,2 sin(Θ2,1 + β1,2 − α1,2)

−k1,4a1,4[r2 sin(Θ2,1 − α1,4) + r3 sin(Θ3,1 − α1,4) + b1,4 sin(Θ4,1 + β1,4 − α1,4)]
(23)
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The static balance equations are created by combining Equations (22) and (23), using
the same accumulated joint angle, as follows:

k1,2a1,2b1,2 sin(Θ2,1 + β1,2 − α1,2) + k1,4a1,4r2 sin(Θ2,1 − α1,4)

+
(

1
2 m2g + m3g + m4g

)
r2 sin(Θ2,1 − 270◦) = 0

(24)

k1,4a1,4r3 sin(Θ3,1 − α1,4) +

(
1
2

m3g + m4g
)

r3 sin(Θ3,1 − 270◦) = 0 (25)

k1,4a1,4b1,4 sin(Θ4,1 + β1,4 − α1,4) +
1
2

m4gr4 sin(Θ4,1 − 270◦) = 0 (26)

The sine functions in Equations (24)–(26) should cause the signs of the terms to
be opposite, so the attachment angles of the springs can be calculated. All the torque
contributions of springs s1,2 and s1,4 are functions of Θ2,1, Θ3,1, and Θ4,1, which are used
for balancing the gravitational torque contribution. Thus, the internal counter-torque at
joint 1 is zero.

Joint 2 is between link 2 and link 3; therefore, link 2 is case (a), since it does not follow
link 2; links 3 and link 4, which follow link 2, are case (b). Based on Equation (9), the torque
contribution at joint 2 of these links can be calculated as follows:

τ2,g = −[
1
2

m3g + m4g]r3 sin(Θ3,1 − 270◦)− 1
2

m4gr4 sin(Θ4,1 − 270◦) (27)

Springs s1,2 and s3,4, which are attached to links that both precede or follow link 2,
are case (a). Their torque contribution at joint 2 is, thus, zero. Springs s1,4 and s2,4, whose
preceding link is either link 2 itself or a link before link 2 (i.e., link 2 is between the links to
which the spring is attached) are case (b). Therefore, based on Equations (19) and (20), their
torque contribution at joint 2 can be calculated as follows:

E2,s = −k1,4a1,4[r3 sin(Θ3,1 − α1,4) + b1,4 sin(Θ4,1 + β1,4 − α1,4)] (28)

I2,s = k1,4r2[r3 sin(Θ3,2) + b1,4 sin(Θ4,2 + β1,4)]

−k2,4a2,4[r3 sin(Θ3,2) + b2,4 sin(Θ4,2 + β2,4 − α2,4)]
(29)

The static balance equations are created by combining Equations (27)–(29), using the
same accumulated joint angle, as follows:

k1,4a1,4r3 sin(Θ3,1 − α1,4) +

(
1
2

m3g + m4g
)

r3 sin(Θ3,1 − 270◦) = 0 (30)

k1,4a1,4b1,4 sin(Θ4,1 + β1,4 − α1,4) +
1
2

m4gr4 sin(Θ4,1 − 270◦) = 0 (31)

k1,4r2r3 sin(Θ3,2)− k2,4a2,4r3 sin(Θ3,2 − α2,4) = 0 (32)

k1,4b1,4r2 sin(Θ4,2 + β1,4)− k2,4a2,4b2,4 sin(Θ4,2 + β2,4 − α2,4) = 0 (33)

Note that, for joint 2, the static balance equations, which are functions of the accumulated
joint angles Θ3,1 and Θ4,1 (Equations (30) and (31)), are the same as Equations (25) and (26).
The sine functions in Equations (32) and (33) should cause the signs of the terms to be opposite,
so the attachment angles of the springs can be calculated. The internal counter-torques
of springs s1,4 and s2,4 are equal to the magnitude of the terms from Equation (29), and
replacing k1,4, k2,4, b1,4, b2,4 with the static balance Equation (30) to Equation (33) will cancel
them out under the sine function. The internal counter-torque can, thus, be calculated using
Equation (21), as follows:

Z2 = k1,4r2r3 + k1,4r2b1,4 + k2,4a2,4r3 + k2,4a2,4b2,4=
r2

a1,4
(m4gr4 + (m3gr3 + 2m4gr3)) (34)
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Equation (34) shows that the internal counter-torque at joint 2 is a function of the
preattachment length of spring s1,4.

Joint 3 is between link 3 and link 4. Links 2 and 3, therefore, are case (a), while link 4 is
case (b). Based on Equation (9), the torque contribution at joint 3 of link 4 can be calculated
as follows:

τ3,g = −1
2

m4gr4 sin(Θ4,1 − 270◦) (35)

Spring s1,2, which connects the links that precede link 3, is case (a), and its torque
contribution at joint 3 is zero. Springs s1,4, s2,4, and s3,4, for which the preceding link is link
3, or link 3 is between the links to which they are attached, are case (b). Based on Equations
(19) and (20), their torque contributions at joint 3 can be calculated as follows:

E3,s = −k1,4a1,4b1,4 sin(Θ4,1 + β1,4 − α1,4) (36)

I3,s = k1,4b1,4[r2 sin(Θ4,2 + β1,4) + r3 sin(Θ4,3 + β1,4)]

−k2,4b2,4[a2,4 sin(Θ4,2 + β2,4 − α2,4)− r3 sin(Θ4,3 + β2,4)]− k3,4a3,4b3,4 sin(Θ4,3 + β3,4 − α3,4)
(37)

The static balance equations are created by combining Equations (35)–(37), using the
same accumulated joint angle, as follows:

k1,4a1,4b1,4 sin(Θ4,1 + β1,4 − α1,4) +
1
2

m4gr4 sin(Θ4,1 − 270◦) = 0 (38)

k1,4b1,4r2 sin(Θ4,2 + β1,4)− k2,4a2,4b2,4 sin(Θ4,2 + β2,4 − α2,4) = 0 (39)

k1,4b1,4r3 sin(Θ4,3 +β1,4) + k2,4b2,4r3 sin(Θ4,3 + β2,4)

−k3,4a3,4b3,4 sin(Θ4,3 + β3,4 − α3,4) = 0
(40)

Note that the static balance equations, which are a function of the accumulated joint
angles Θ4,1 and Θ4,2 (Equations (38) and (39)), are the same as Equations (31) and (33). The
sine functions in Equation (40) should cause the signs of the terms to be opposite. The
internal counter-torques of springs s1,4 and s2,4 are equal to the magnitude of the terms
from Equation (37), and replacing k1,4, k2,4, k3,4, b1,4, b2,4, and b3,4 with the static balance
Equations (30)–(33) and (40) will cancel them out under the sine function. The internal
counter-torque at joint 3 can thus be calculated using Equation (21), as follows:

Z3 = k1,4r2b1,4 + k1,4r3b1,4 + k2,4a2,4b2,4 + k2,4r3b2,4 + k3,4a3,4b3,4

=
[

r2
a1,4

+ r3
a1,4

+ 1
2

(
r2

a1,4
+ 1
)

r3
a2,4

]
(m4gr4)

(41)

Equation (41) shows that the internal counter torque at joint 3 is a function of the
preattachment lengths of springs s1,4 and s2,4.

4. Minimum of Internal Counter-Torque of a Statically Balanced Manipulator

Definitely, there is an advanced optimization method that can be used such as mul-
tiobjective optimization. In this study, to reduce the complexity of the two-objective
optimization problem, the two objective functions are summed using a simple approach.
The internal counter-torques at joints 2 and 3 are functions of the preattachment lengths of
springs s1,4 and s2,4. The following equation can, therefore, be used to minimize internal
counter-torque, assuming that the sum of internal counter-torques in an objective function
is as follows:

Zs = Z2 + Z3 =
r2

a1,4
(m3gr3 + 2m4gr3) +

[
2

r2

a1,4
+

r3

a1,4
+

1
2

(
r2

a1,4
+ 1
)

r3

a2,4

]
(m4gr4) (42)

Spring s1,2 is independent of the internal counter-torque at joints 2 and 3, as shown
in Equations (34) and (41). Because these internal counter-torques are functions of the
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preattachment lengths of springs s1,4 and s2,4, these lengths are normalized according to
the preattachment length of spring s1,2, which can be expressed as follows:

x1,4 =
a1,2

a1,4
(43)

x2,4 =
a1,2

a2,4
(44)

Because the sum of the lengths of the links in the manipulator is 3.2 times the preat-
tachment length of s1,2, to avoid having the attachment point of the ground-attached spring
s1,4 installed outside the range formed by all the straight links in the vertical direction from
the ground, the normalized coefficient of the spring is constrained to be within the range
of 0–3.2. For spring s2,4, which is between links 2 and 4, the preceding attachment point
cannot be installed anywhere other than link 2. The normalized coefficient for this spring
is, therefore, restricted to the range of 0–1.

As an example, we ran an optimization procedure on a previously described four-link
manipulator. The link properties of the manipulator are shown in Table 1, adopted from [45].
To perform the optimization procedure, we used MATLAB (with the fminsearch function)
and a computer with a CPU with the following specifications: 12th Gen Intel(R) Core(TM)
i9-12900K 3.19 GHz, and 32 GB RAM. The time taken to run the optimization procedure
was 3.2 min. The preselected and optimized attachment angles and lengths are shown in
Tables 2 and 3. The optimized normalized coefficients of springs s1,4 and s2,4 were 2.29. and
0.71, respectively. Their preceding lengths were obtained by substituting these coefficients
into Equations (43) and (44); the stiffness and preattachment lengths of springs s1,4, s2,4,
and s3,4 were obtained using the static balance equations (Equations (24)–(26), (30)–(33)
and (38)–(40)), as shown in Table 2. Table 3 shows that the optimized stiffness of springs
s1,4 and s2,4 were 443 N/m and 1713 N/m less than the preselected value, respectively. The
optimized preattachment lengths of springs s1,4 and s2,4 were, respectively, 0.69 m and
0.21 m longer than the preselected lengths, and that of spring s3,4 was 0.12 m shorter. The
peak magnitude of the internal counter-torques at joint 2 and joint 3 were, respectively,
reduced by 28% (from 392 N·m to 282 N·m) and 50% (from 429 N·m to 215 N·m) after
optimization. The total peak magnitude of the internal counter-torque was, thus, reduced
by 57% (from 821 N·m to 497 N·m).

Table 1. Link properties of the 4-link manipulator.

m2 (kg) m3 (kg) m4 (kg) r2 (m) r3 (m) r4 (m)

25 26 18 0.36 0.45 0.30

Table 2. Preselected attachment angles and post-attachment length of springs.

α1,2 (◦) α1,4 (◦) α2,4 (◦) α3,4 (◦) β1,2 (◦) β1,4 (◦) β2,4 (◦) β3,4 (◦) b1,2 (m) b1,4 (m) b2,4 (m) b3,4 (m)

90 90 0 180 0 0 0 180 0.30 0.09 0.09 0.25

Table 3. Preselected and optimized spring stiffness, spring preattachment length, and peak magnitude
of internal counter-torque.

k1,2
(N/m)

k1,4
(N/m)

k2,4
(N/m)

k3,4
(N/m)

a1,2
(m)

a1,4
(m)

a2,4
(m)

a3,4
(m)

Z1
(N·m)

Z2
(N·m)

Z3
(N·m)

Zs
(N·m)

Preselected
1001

1014 3649
1828 0.30

0.40 0.10 0.40
0

392 429 821
Optimized 443 1713 0.69 0.21 0.18 282 215 497

We substituted the values from Tables 1 and 2 into the static balance equations
(Equations (24)–(26), (30)–(33) and (38)–(40)) and into the internal counter-torque at joints
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2 and 3 (Equations (34) and (41)) and found that the sine functions did not cancel them
out. The torque contributions of the springs that balance the gravitational torque and the
internal counter-torque at the joints could, therefore, be simulated using the accumulated
joint angles, which were in the range of 0–360◦ (Figure 5).
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tude of internal counter-torque. 
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Optimized 443 1713 0.69 0.21 0.18 282 215 497 

We substituted the values from Tables 1 and 2 into the static balance equations (Equa-
tions (24)–(26), (30)–(33) and (38)–(40)) and into the internal counter-torque at joints 2 and 
3 (Equations (34) and (41)) and found that the sine functions did not cancel them out. The 
torque contributions of the springs that balance the gravitational torque and the internal 
counter-torque at the joints could, therefore, be simulated using the accumulated joint an-
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Figure 5. Gravitational torque, torque caused by springs balancing gravitational torque and internal
counter-torque at (a) joint 1, (b) joint 2, and (c) joint 3.

To further investigate the relative magnitude of these torques, we evaluated the torque
contributions of ground-attached springs used for balancing gravitational torques and
found that they were maintained regardless of whether the preselected or adjusted spring
attachment parameters were used in the static balance equations. At each joint, if the joint
was closer to link 1 (the ground link), the magnitudes of the torque contributions of both
gravity and the spring at that joint were larger. At joint 1, the internal counter-torque
caused by the springs was zero. At joint 2, the optimized internal counter-torque was
larger than that at joint 3. The torque contribution ratio of the internal counter-torque to
the gravitational balancing torque at joint 2 was lower than that at joint 3, however. This
result showed that the internal counter-torques at the joints could be significantly reduced
by adjusting the attachment points of the springs but maintaining the static-balancing
conditions of the manipulator as a whole.
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5. Conclusions

This paper presents an evaluation of the internal counter-torque produced by springs
in statically balanced manipulators. Some of the torque contributions of ground-attached
springs are used to balance the gravitational torque. Other torque contributions counter
the torque contributions of the non-ground-attached springs; these are the internal counter-
torques. (1) The torque contribution of a spring at joint 1 is a function of the accumulated
joint angles of the joints between the ground link and a mobile link only. This torque must
balance the gravitational torque because it has the same accumulated joint angle as the
gravitational torque. Thus, the joint that is connected to the ground does not have any in-
ternal counter-torque. (2) The internal counter-torque on other joints could be substantially
reduced by adjusting the attachment lengths of the springs installed. In the three-DOF
case of this paper, we found that there were 28% and 50% reductions at joints 2 and 3,
respectively. (3) This evaluation can be applied to any planar serially connected manip-
ulator with any configuration of springs installed according to the systematic balancing
method. By following this process of determining the torque contributions at the joints,
the internal counter-torque can be calculated. (4) This study highlights the concept and
evaluation of the internal counter-torque and shows that when designing manipulators, the
internal counter-torque should be considered in addition to static balancing. Less internal
counter-torque can reduce the tension in the manipulator and the forces applied to its joints
and links. (5) Future work based on this study may involve expanding on this method
to derive a more general model in which the CoM of each link is considered not along its
length, as well as the multi-objective optimization of internal counter-torques with different
spring configurations under the same static-balancing condition, and experiments designed
for verifying the effect of the reduction in the internal counter-torque.

Author Contributions: Conceptualization, C.-S.J. and D.-Z.C.; methodology, C.-S.J., C.-W.J. and
D.-Z.C.; software, C.-S.J. and C.-H.S.; writing—original draft preparation, C.-S.J. and C.-W.J.; writing—
review and editing, C.-S.J.; visualization, C.-S.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was funded by the Ministry of Science and Technology (grant number 109-
2221-E-002-002-MY3), Taiwan; and funded for English editing by National Taiwan University under
the Excellence Improvement Program for Doctoral Students (grant number 108-2926-I-002-002-MY4),
sponsored by National Science and Technology Council, Taiwan.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Hockstein, N.G.; Nolan, J.P.; O’Malley, B.W.; Woo, Y.J. Robotic microlaryngeal surgery: A technical feasibility study using the

daVinci surgical robot and an airway mannequin. Laryngoscope 2005, 115, 780–785. [CrossRef] [PubMed]
2. Wang, W.; Li, J.; Wang, S.; Su, H.; Jiang, X. System design and animal experiment study of a novel minimally invasive surgical

robot. Int. J. Med. Robot. Comput. Assist. Surg. 2016, 12, 73–84. [CrossRef] [PubMed]
3. Lin, P.Y.; Shieh, W.B.; Chen, D.Z. A theoretical study of weight-balanced mechanisms for design of spring assistive mobile arm

support (MAS). Mech. Mach. Theory 2013, 61, 156–167. [CrossRef]
4. Zhou, L.B.; Chen, W.H.; Chen, W.J.; Bai, S.P.; Zhang, J.B.; Wang, J.H. Design of a passive lower limb exoskeleton for walking

assistance with gravity compensation. Mech. Mach. Theory 2020, 150, 103840. [CrossRef]
5. Zhou, L.L.; Bai, S.P.; Andersen, M.S.; Rasmussen, J. Modeling and Design of a Spring-loaded, Cable-driven, Wearable Exoskeleton

for the Upper Extremity. Model. Identif. Control 2015, 36, 167–177. [CrossRef]
6. Dewi, T.; Nurmaini, S.; Risma, P.; Oktarina, Y.; Roriz, M. Inverse kinematic analysis of 4 DOF pick and place arm robot manipulator

using fuzzy logic controller. Int. J. Electr. Comput. Eng. 2020, 10, 1376–1386. [CrossRef]
7. Stenmark, M.; Malec, J. Knowledge-based instruction of manipulation tasks for industrial robotics. Robot. Comput.-Integr. Manuf.

2015, 33, 56–67. [CrossRef]
8. Martini, A.; Troncossi, M.; Rivola, A. Algorithm for the static balancing of serial and parallel mechanisms combining counter-

weights and springs: Generation, assessment and ranking of effective design variants. Mech. Mach. Theory 2019, 137, 336–354.
[CrossRef]

9. Segla, S. Static balancing of robot mechanisms and manipulation devices. Stroj. Časopis—J. Mech. Eng. 2018, 68, 77–90. [CrossRef]
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