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Abstract
With the use of springs, a method to balance the constant forces in arbitrary directions on a planar serial manipulator
is developed in this study. Gravity balancing has been discussed a lot in the past. However, manipulators usually bear
forces from various directions rather than only a fixed one as gravity. For instance, an industrial manipulator would
bear forces from everywhere during the working process. Therefore, a method to balance these forces in arbitrary
directions with springs is proposed. Based on the representation of energy, spring energy is the function of springs’
attachment points. Two spring systems with different attachment angles are needed to balance respectively forces in
arbitrary directions and gravity. The spring installations of the above systems on 3-DoF manipulators are proposed.
Finally, a resistive force-balanced manipulator with/without gravity balance in the grinding process is shown. In
sum, this paper for the first time develops the balancing method for forces in arbitrary directions, expanding the
spring balance theory to a broader application.

1. Introduction
The balancing methods of a manipulator have been developed in the last few decades. Advantages
brought by the balancing of a manipulator such as decreasing the load of actuators and improving con-
trol performance have been proved [1–3]. The methodology is expansively applied to numerous fields.
For example, gravity balancer is used on many tools for surgery [4] or industry [5] to carry the weight of
the hand tools and to improve stability during processing, thereby reducing worker injuries and improv-
ing productivity. For some automatic robotic arm [6–8], springs are used to share the heavy weight,
which reduce the load on the driving system. In the biomedical field, ref. [9] proposed the design of a
medical robot arm for ultrasound imaging, which used tension spring to achieve static balance; ref. [10]
developed a gravity balanced 2R1T (2 rotations and 1 translation) mechanism and used it on surgery
applications. Other applications such as upper arm exoskeletons [11, 12] and lower limb rehabilitation
devices [13, 14], with balancing of limbs’ weight, users can perform overhead work or rehabilitation
easily.

Several balancing methods have been developed in history. For a serial planar manipulator with only
revolute joints, the method to balance gravity with springs has been proposed by refs. [15–18], of which
the springs are directly attached to the manipulator. Ref. [19] further discussed the efficiency of using
spring on balancing and has proposed a method to use spring efficiently. Other balancing methods can
fully/partially balance gravity. The methods include adding modules formed by springs and auxiliary
links [20, 21] or having gravity compensators [22–24] and counterweight [25] on the manipulators.
Besides serial planar manipulator, several studies developed gravity balance of spatial parallel mech-
anisms. Ref. [26] discussed two passive balance approaches with counterweights and with springs;
ref. [27] developed a gravity compensator composed of gears and springs; ref. [28] proposed a dynamic
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Figure 1. A grinding manipulator with reaction force between the end effector and the workpiece.

gravity compensation controller for a parallel manipulator. With these balancing methods, the gravity
of devices can be fully or partially compensated.

While researches in the past focused mainly on the balancing of gravity, manipulators do not just
bear forces in the direction of gravity during actual operation. For example, in an industry manipulator
for drilling [29, 30] or grinding [31], the actuators bear reaction forces between the end effector and
the workpieces in various directions (as shown in Fig. 1.) Moreover, for a long continuous toolpath, the
reaction forces are applied on the manipulator for even longer, which greatly increases the load on the
actuators. Such situation is not considered in the past researches, and the balance methods cannot be
applied to non-gravity directional forces, thus limiting the application of this technique. This study is a
pioneering attempt in developing a method that uses springs to balance constant forces in arbitrary direc-
tions for a planar serial manipulator. Similar to the balancing of gravity, if the forces on manipulators
can be fully balanced or partially compensated, it will help to reduce the actuator load.

Our approach differs from the past works, in addition to the gravity, balancing of forces in arbi-
trary directions are included. Also, additional balancing device such as auxiliary links or counterweight
are not required in this method, the tension springs are directly attached on the manipulator and used
to balance the forces. This method can be widely used in many fields, such as the design of industry
manipulators or the design of wearable devices for human upper/lower limbs.

The structure of this paper is as follows: Section 2 models a n-links planar manipulator with springs
and only revolute joints. Since the attached points of a spring that is on the links are expressed in polar
coordinate system, the attachment parameters of a spring include attachment distances and attachment
angles. Based on the modeling of the spring-manipulator system, the formulation of the potential energy
of a constant force and the spring’s energy in the quadratic form is derived. Accordingly, the balancing
conditions are obtained. The balancing conditions show that the springs are supposed to be attached at
specific angles to ensure they contribute to the balancing. Hence, in Section 3, the ideal spring attachment
angles are proposed. Besides the attachment angles, to ensure the energy of the planar forces can be
fully offset, the springs are required to be installed in specific locations. As for Section 4, it presents
the arrangement of springs that serve to balance the constant forces applied on a 3-degrees-of-freedom
(3-DoF) manipulator. Then in Section 5, a spring-balanced grinding manipulator is shown as an example.
Finally, Section 6 serves as a conclusion of the study.

2. Balancing Constant Forces in Arbitrary Directions with Springs
2.1. Quadratic form of the potential energy of constant forces
Figure 2 shows a planar serial manipulator with revolute joints only. A constant force in arbitrary direc-
tions is applied on the link. As shown in Fig. 2, rj is the length of link j; θj is the rotation angle of link
j; fj is the constant force in arbitrary direction ϕj that is applied on link j; sj is the distance between the
joint and the location that fj is applied on; dj is the distance between the location that fj is applied on
and the zero-potential plane of fj (here set as the plane perpendicular to fj and passing through the joint
between the ground link and the 2nd link.)
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Figure 2. A revolute joints only planar serial manipulator with a constant force in an arbitrary
direction.

The potential energy of the planar forces is expressed as

Uf (j) = fjdj (1)

The distance between the location of fj and the zero-potential plane is expressed as

dj = sj cos

(
ϕj −

j∑
t=2

θt

)
+

j−1∑
v=2

rv cos

(
ϕj −

v∑
t=2

θt

)
(2)

Substituting Eq. (2) into Eq. (1), the energy of the planar forces can be rewritten as

Uf (j) = fjsj cos

(
ϕj −

j∑
t=2

θt

)
+ fj

j−1∑
v=2

rv cos

(
ϕj −

v∑
t=2

θt

)
(3)

Equation (3) can be expressed in quadratic form as

Uf (j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rj

...

rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

Wf (j)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

rj

...

rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4)

in which matrix Wf (j) is a j × j square matrix with non-zero components locate at the first row as follows:

Wf (j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 Wf (j)
1,2 Wf (j)

1,3 . . . Wf (j)
1,j

0 0 0 0 0

0 0 0
...

...

...
...

... 0 0

0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)
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Figure 3. A 2-DoF planar manipulator with a constant force.

The non-zero components in the matrix are as follows:

Wf (j)
1,j = fj

r1

sj

rj

cos

(
ϕj −

j∑
t=2

θt

)
(6a)

Wf (j)
1,v = fj

r1

cos

(
ϕj −

v∑
t=2

θt

)
for j > v ≥ 2 (6b)

The matrix components Wf (j)
1,j are in unit of stiffness (N/m), which can be regarded as a “pseudo-stiffness”

between ground link (link 1) and link j. The pseudo-stiffness represents the change of energy with the
relative posture between two links. Such representation can show the relationship between energy and
manipulator’s posture clearly.

Take a 2-DoFs planar manipulator with constant force f3 shown in Fig. 3 as an illustrative example.
According to Eq. (5), the potential energy can be expressed in quadratic form as follows

Uf (3) =
⎡
⎢⎣

r1

r2

r3

⎤
⎥⎦

T ⎡
⎢⎣

0 Wf (3)

1,2 Wf (3)

1,3

0 0 0

0 0 0

⎤
⎥⎦
⎡
⎢⎣

r1

r2

r3

⎤
⎥⎦ (7)

Also, according to Eqs. (6a), (6b), the non-zero components Wf (3)
1,2 and Wf (3)

1,3 can be respectively
expressed as

Wf (3)

1,2 = f3

r1

cos(ϕ3 − θ2) (8a)

Wf (3)

1,3 = f3

r1

s3

r3

cos(ϕ3 − θ2 − θ3) (8b)

2.2. Quadratic form of the elastic energy
As shown in Fig. 4, a zero-free-length (ZFL) extension spring Si,j with spring stiffness kS(i,j) is attached
between link i and link j. The ZFL spring means that the length of the spring is its elongation while
maintaining zero length under unstretched conditions. The lengths of link i and j are ri and rj; lS(i,j) is the
elongation of spring Si,j; aS(i,j) is the attachment distance of Si,j on the proximally attached link i; bS(i,j) is
the attachment distance of Si,j on the distally attached link j; αS(i,j) is the attachment angle of Si,j on the
proximally attached link i; and βS(i,j) is the attachment angle of Si,j on the distally attached link j. In this
study, only extension springs are considered. Therefore, kS(i,j) is a positive value; likewise, aS(i,j) and bS(i,j),
which refer to distances, must also be positive.
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Figure 4. A ZFL spring attached between links i and j.

The elastic potential energy of the zero-free length spring Si,j, which is attached between links i and
j, can be expressed as

US(i,j) = 1

2
kS(i,j)l

2
S(i,j) (9)

where the elongation of Si,j is expressed as

lS(i,j) = �bS(i,j) − �aS(i,j) +
j−1∑

t=i+1

�rt (10)

Substituting Eq. (10) into Eq. (9), US(i,j) can be presented as

US(i,j) = 1

2
kS(i,j)

(
a2

S(i,j) + b2
S(i,j) +

j−1∑
t=i+1

r2
t

)
+ rirjK

S(i,j)
i,j +

j−1∑
v=i+1

rirvK
S(i,j)
i,v

+
j−1∑

u=i+1

rurjK
S(i,j)
u,j +

j−2∑
u=i+1

j−1∑
v=u+1

rurvK
S(i,j)
u,v (11)

where

KS(i,j)
i,j = kS(i,j)

aS(i,j)

ri

bS(i,j)

rj

cos

(
π + αS(i,j) − βS(i,j) −

j∑
t=i+1

θt

)
(12a)

KS(i,j)
i,v = kS(i,j)

aS(i,j)

ri

cos

(
π + αS(i,j) −

v∑
t=i+1

θt

)
for v < j (12b)

KS(i,j)
u,j = kS(i,j)

bS(i,j)

rj

cos

(
−βS(i,j) −

j∑
t=u+1

θt

)
for u > i (12c)

KS(i,j)
u,v = kS(i,j) cos

(
−

v∑
t=u+1

θt

)
for u > i; v < j (12d)
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Equation (11) can also be represented in quadratic form as

US(i,j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

ri

...

rj

...

rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

KS(i,j)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r1

r2

...

ri

...

rj

...

rn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where the matrix KS(i,j) is a square matrix with non-zero components locate at the area bounded by row
i, column j, and the diagonal as follows,

KS(i,j) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0

0 0
. . . . . . 0

0
... ∗ KS(i,j)

i,i+1 . . . KS(i,j)
i,j

∗ KS(i,j)
u,v

...
...

...

...
... ∗ KS(i,j)

j−1,j

∗ . . . 0

0 0

0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

The matrix component KS(i,j)
u,v is a pseudo-stiffness between link u and link v, which represents the

change of elastic energy with the relative posture between link u and link v. Note that, the compo-
nents in the diagonal of the matrix KS(i,j) (i.e., ∗ in the diagonal of the matrix) are the constant terms in
Eq. (11) (i.e., the terms: 1

2
kS(i,j)

(
a2

S(i,j) + b2
S(i,j) +∑j−1

t=i+1 r2
t

)
).

Here, take the 2-DoF planar manipulator in Fig. 3, which is attached by springs S1,3 and S2,3 as shown
in Fig. 5, as an example.

According to Eq. (13), the elastic energy of springs S1,3 and S2,3 in quadratic form are

US(1,3) =
⎡
⎢⎣

r1

r2

r3

⎤
⎥⎦

T

KS(1,3)

⎡
⎢⎣

r1

r2

r3

⎤
⎥⎦ (15a)

US(2,3) =
⎡
⎢⎣

r1

r2

r3

⎤
⎥⎦

T

KS(2,3)

⎡
⎢⎣

r1

r2

r3

⎤
⎥⎦ (15b)
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Figure 5. A 2-DoFs planar articulated manipulator attached with two springs.

According to Eq. (14), the matrix KS(1,3) and KS(2,3) are

KS(1,3) =

⎡
⎢⎢⎣

∗ KS(1,3)

1,2 KS(1,3)

1,3

∗ KS(1,3)

2,3

∗

⎤
⎥⎥⎦ (16a)

KS(2,3) =
⎡
⎢⎣

∗ 0 0

∗ KS(2,3)

2,3

∗

⎤
⎥⎦ (16b)

And from Eqs. (12a)–(12d), the components in KS(1,3) and KS(2,3) are

KS(1,3)

1,2 = kS(1,3)

aS(1,3)

r1

cos
(
π + αS(1,3) − θ2

)
(17a)

KS(1,3)

1,3 = kS(1,3)

aS(1,3)

r1

bS(1,3)

r3

cos
(
π + αS(1,3) − βS(1,3) − θ2 − θ3

)
(17b)

KS(1,3)

2,3 = kS(1,3)

bS(1,3)

r3

cos
(−βS(1,3) − θ3

)
(17c)

KS(2,3)

2,3 = kS(2,3)

aS(2,3)

r2

bS(2,3)

r3

cos
(
π + αS(2,3) − βS(2,3) − θ3

)
(17d)

Here, the potential energy of the constant forces Uf (j) (Eq. (5)) is balanced by the springs’ energy US(i,j)

(Eq. (13)). The balancing conditions are discussed in the following section.

https://doi.org/10.1017/S0263574723000279 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574723000279


Robotica 2019

2.3. Balancing conditions of constant forces in arbitrary directions
To balance a constant force in an arbitrary direction, the summation of the potential energy from forces
and the elastic energy of springs should be equal to a constant.∑

Uf (j) +
∑

US(i,j) = constant (18)

The energy is represented in the quadratic form. To achieve balancing, the summation of the matrices
Wf (j) and KS(i,j) should be equal to a constant. According to Eqs. (6) and (14), since the components in
the matrices’ diagonals are constant and the elements below the main diagonal are all zero, they can be
neglected. Considering only the upper triangular matrix, the balancing equations can be expressed as∑

Wf (v)
1,j +

∑
KS(1,v)

1,j = 0 for v ≥ j > 1 (19a)

and ∑
KS(u,v)

i,j = 0 for i ≥ u > 1; v ≥ j (19b)

For example, if we take a look at Eqs. (19a), (19b) and substitute into them Eqs. (8a), (8b) and (17a)–
(17d), then, to balance the forces applied on the 2-DoFs planar manipulator in Fig. 3 with the springs
shown in Fig. 5, the balancing equations would then be

f3

r1

cos(ϕ3 − θ2) + kS(1,3)

aS(1,3)

r1

cos
(
π + αS(1,3) − θ2

)= 0 (20a)

f3

r1

s3

r3

cos(ϕ3 − θ2 − θ3)

+ kS(1,3)

aS(1,3)

r1

bS(1,3)

r3

cos
(
π + αS(1,3) − βS(1,3) − θ2 − θ3

)= 0 (20b)

kS(1,3)

bS(1,3)

r3

cos
(−βS(1,3) − θ3

)

+kS(2,3)

aS(2,3)

r2

bS(2,3)

r3

cos
(
π + αS(2,3) − βS(2,3) − θ3

)= 0 (20c)

According to the example, since the parameters kS(i,j), aS(i,j), bS(i,j), rj are positive value, the attachment
angles αS(i,j) and βS(i,j) are required to be attached at specific angles to satisfy the balancing Eqs. (20a)–
(20c). The determination of spring attachment angles is discussed in the following section.

3. The Determination of Spring Attachment Angles for Balancing Constant Forces in Arbitrary
Directions

3.1. The attachment angles of ground-connected springs
According to Eq. (6), the non-zero components of matrix Wf (j) are located in the first row only. To offset
the non-zero components Wf (j)

1,2 , Wf (j)
1,3 . . . Wf (j)

1,n (i.e., to satisfy Eq. (19a)), the ground-connected springs
S1,j, which can contribute non-zero components KS(1,j)

1,v for j ≥ v ≥ 2, in the first row of KS(1,j), must be
installed.

To ensure the springs are used to balance the planar forces rather than increasing the number of unbal-
anced components, the sign of components contributed by the ground-connected springs is regulated to
be negative with their corresponding non-zero components in Wf (j).

According to Eq. (6), Wf (j)
1,v is a term to be balanced, and whether its sign will be positive/negative,

it is determined by the angles in the cosine term. Similarly, according to Eqs. (12a)–(12d), the posi-
tive/negative signs of components provided by a spring are also determined by the angles in the cosine
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term. To use component KS(1,j)
1,v to balance the corresponding component Wf (j)

1,v , there must be a π differ-
ence between the angles in the cosine term of KS(1,j)

1,v and Wf (j)
1,v . The constraints for attachment angles of

a ground-connected spring are inferred as follows.
According to Eq. (14), the spring S1,j contributes the components, KS(1,j)

1,j and KS(1,j)
1,v , for v < j in the

first row of matrix KS(1,j). Then, according to Eqs. (12a), (12b), it can be seen that the angles in the two
cosine terms KS(1,j)

1,j and KS(1,j)
1,v are (π + αS(1,j) − βS(1,j) −∑j

t=2 θt) and (π + αS(1,j) −∑v
t=2 θt), respectively.

According to Eq. (6), the angles in the cosine terms of the corresponding balanced components Wf (j)
1,j

and Wf (j)
1,v for v < j are (ϕj −∑j

t=2 θt) and (ϕj −∑v
t=2 θt), respectively. Then, two constraints for attachment

angles of ground-connected springs are found as below,(
π + αS(1,j) − βS(1,j) −

j∑
t=2

θt

)
−
(

ϕj −
j∑

t=2

θt

)
= π (21a)

(
π + αS(1,j) −

v∑
t=2

θt

)
−
(

ϕj −
v∑

t=2

θt

)
= π (21b)

From Eqs. (21a), (21b), the attachment angles of a ground-connected spring are required to be(
αS(1,j), βS(1,j)

)= (
ϕj, 0

)
(22)

Here, a special case is considered. If a ground-connected spring is attached between the ground
link and the 2nd link (S1,2), it contributes only one component KS(1,2)

1,2 ; therefore, Eq. (21a) is the only
constraint. The spring, S1,2, is required to be attached with angles that satisfy αS(1,2) − βS(1,2) = ϕj.

Though according to Eq. (14), a ground-connected spring with attachment angles (ϕj, 0) can be used
to balance the components W1,2, W1,3 . . . W1,n, there still exist non-zero components KS(1,j)

u,v for u > 1 below
the first row of matrix which need to be balanced (i.e. to satisfy Eq. (19b)). Therefore, the installation
of non-ground-connected springs is necessary. The determination of attachment angle for non-ground-
connected springs is discussed in the following section.

3.2. The attachment angles of ground-connected springs
According to Eq. (14), the non-zero components below the first row of matrix remained by a ground-
connected spring S1,j are KS(1,j)

u,j and KS(1,j)
u,v for u > 1 and v < j. Also, by referring to Eqs. (12c), (12d), the

components have angles in the cosine terms (−βS(1,j) −∑j
t=u+1 θt) and (−∑v

t=u+1 θt), respectively. Based
on the previous chapter, it is known that βS(1,j) = 0; therefore, angles in the cosine term of unbalanced
components below the first row can be generally expressed as (0 −∑v

t=u+1 θt) for u > 1. To balance such
components with a non-ground-connected spring, the components of the non-ground-connected spring
need to have a π difference between their angles in the cosine term and (0 −∑v

t=u+1 θt).
For a non-ground-connected spring Si,j, the matrix components include KS(i,j)

i,j , KS(i,j)
i,v , KS(i,j)

u,j , and KS(i,j)
u,v

for u < i and v > j, of which their angles in the cosine terms are (π + αS(i,j) − βS(i,j) −∑j
t=i+1 θt), (π +

αS(i,j) −∑v
t=i+1 θt), (−βS(i,j) −∑j

t=u+1 θt), and (0 −∑v
t=u+1 θt), respectively. Where KS(i,j)

u,v has the same
angles as the unbalanced components, it cannot be used to balance but needs to be balanced by other
springs. For KS(i,j)

i,j , KS(i,j)
i,v , and KS(i,j)

u,j , to have a π difference with the unbalanced components that were
remained by the ground-connected springs, the constraints of angles are listed as follows(

π + αS(i,j) − βS(i,j) −
j∑

t=i+1

θt

)
−
(

0 −
j∑

t=i+1

θt

)
= π (23a)

(
π + αS(i,j) −

v∑
t=i+1

θt

)
−
(

0 −
v∑

t=i+1

θt

)
= π (23b)
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(
−βS(i,j) −

j∑
t=u+1

θt

)
−
(

0 −
j∑

t=u+1

θt

)
= π (23c)

Equations (23a)–(23c) cannot be established at the same time. It is shown that the components
KS(i,j)

i,j , KS(i,j)
i,v , and KS(i,j)

u,j cannot be used simultaneously to balance the unbalanced components remained
by the ground-connected springs. With that said, a non-ground-connected spring is able to contribute at
most two types of components that can be used for balancing. Here, we use KS(i,j)

i,j and KS(i,j)
i,v to balance.

According to Eqs. (23a), (23b), (
αS(i,j), βS(i,j)

)= (0, 0) (24a)

While KS(i,j)
i,j and KS(i,j)

u,j are used for balancing, according to Eqs. (23a), (23c),(
αS(i,j), βS(i,j)

)= (π , π) (24b)

The attachment angles in Eqs. (24a), (24b) are ideal attachment angles for non-ground-connected
springs. Note that, according to Eqs. (23b), (23c), if KS(i,j)

i,v and KS(i,j)
u,j are chosen to balance, the spring

is then attached with (αS(i,j), βS(i,j)) = (0, π ). However, if a non-ground-connected spring Si,j with (0, π )
is used, the component KS(i,j)

i,j is remained and needs to be balanced. Still, it is required to be attached
by another non-ground-connected spring S′

i,j with (0, 0) or (π , π ). Accordingly, non-ground-connected
spring with (0, π ) is not considered in this study.

There is a special case that needs to be considered. For a non-ground-connected spring attached
between two adjacent links Si,i+1, only one component, KS(i,i+1)

i,i+1 , is contributed. That is, Eq. (23a) is the
only constraint and Si,i+1 is required to be attached with angles that satisfy αS(i,i+1) − βS(i,i+1) = 0.

For the non-ground-connected spring attached with (αS(i,j), βS(i,j)) = (0, 0), the components KS(i,j)
i,j and

KS(i,j)
i,v are used to balance while KS(i,j)

u,j and KS(i,j)
u,v are remained and need to be balanced. Similarly, for the

non-ground-connected spring attached with (αS(i,j), βS(i,j)) = (π , π ), the components KS(i,j)
i,v and KS(i,j)

u,v are
remained as well and need to be balanced. To balance such components, another spring needs to be
installed until all of them are balanced. Hence, the balancing condition in Eq. (19b) can be achieved.

Since the admissible spring attachment angles are found, the springs are also required to be attached
in specific locations to ensure all the components from the forces can be fully offset. The installation of
springs for a 3-DoF manipulator is developed in the following chapter.

4. Spring Installation of 3-DoF Serial Planar Manipulators for Balancing Constant Forces in
Arbitrary Directions

4.1. Case 1: Balancing of a constant force applied on the end link
Figure 6 shows a 3-DoF manipulator with a constant force on the end link.

According to Eqs. (5), (6), the potential work of the force f4 on the end link of the 3-DoF manipulator
in Fig. 6 is

Uf (4) =

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

0 Wf (4)

1,2 Wf (4)

1,3 Wf (4)

1,4

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦ (25)

where

Wf (4)

1,4 = f4

r1

s4

r4

cos(ϕ4 − θ2 − θ3 − θ4) (26a)

Wf (4)

1,3 = f4

r1

cos(ϕ4 − θ2 − θ3) (26b)
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Figure 6. A 3-DoF manipulator with a constant force on the end link (the 4th link).

Wf (4)

1,2 = f4

r1

cos(ϕ4 − θ2) (26c)

To balance Wf (4)
1,4 , a spring, S1,4, is installed. According to Eq. (13), the spring’s energy is

US(1,4) =

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

∗ KS(1,4)

1,2 KS(1,4)

1,3 KS(1,4)

1,4

∗ KS(1,4)

2,3 KS(1,4)

2,4

∗ KS(1,4)

3,4

∗

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦ (27)

And according to Eq. (22), the ground-connected spring S1,4 should be attached with angles (ϕ4, 0).
Therefore, from Eq. (12a), the component that corresponds to Wf (4)

1,4 is

KS(1,4)

1,4 = kS(1,4)

aS(1,4)

r1

bS(1,4)

r4

cos(π + ϕ4 − θ2 − θ3 − θ4) (28)

To fully balance Wf (4)
1,4 , that is when KS(1,4)

1,4 + Wf (4)
1,4 = 0, comparing Eqs. (26a) and (28), the spring

parameters of S1,4 should satisfy

kS(1,4)

aS(1,4)

r1

bS(1,4)

r4

= f4

r1

s4

r4

(29)

Also, Wf (4)
1,3 and Wf (4)

1,2 correspond to KS(1,4)
1,3 and KS(1,4)

1,2 , respectively. According to Eq. (12b),

KS(1,4)

1,3 = kS(1,4)

aS(1,4)

r1

cos(π + ϕ4 − θ2 − θ3) (30a)

KS(1,4)

1,2 = kS(1,4)

aS(1,4)

r1

cos(π + ϕ4 − θ2) (30b)

Similarly, to fully balance Wf (4)
1,3 and Wf (4)

1,2 , comparing Eqs. (30a), (30b) with Eqs. (26b), (26c), the
spring parameters of S1,4 should satisfy

kS(1,4)

aS(1,4)

r1

= f4

r1

(31)

When Eqs. (29), (31) are satisfied, the components Wf (4)
1,4 , Wf (4)

1,3 , and Wf (4)
1,2 are fully balanced by ground-

connected spring S1,4 with angles (ϕ4, 0). However, the components KS(1,4)
2,3 , KS(1,4)

2,4 , and KS(1,4)
3,4 are remained

and need to be balanced by non-ground-connected springs, where

KS(1,4)

2,3 = kS(1,4) cos(−θ3) (32a)
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KS(1,4)

2,4 = kS(1,4)

bS(1,4)

r4

cos(−θ3 − θ4) (32b)

KS(1,4)

3,4 = kS(1,4)

bS(1,4)

r4

cos(−θ4) (32c)

To balance KS(1,4)
2,4 , a non-ground-connected spring S2,4 needs to be installed. According to Eqs. (24a),

(24b), S2,4 needs to be attached with angles (0, 0) or (π , π ). The elastic energy of S2,4 is

US(2,4) =

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

∗ 0 0 0

∗ KS(2,4)

2,3 KS(2,4)

2,4

∗ KS(2,4)

3,4

∗

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦ (33)

If a non-ground-connected spring S2,4 with (π , π ) is installed, the component that corresponds to
KS(1,4)

2,4 is

KS(2,4)

2,4 = kS(2,4)

aS(2,4)

r2

bS(2,4)

r4

cos(π − θ3 − θ4) (34)

To fully balance KS(1,4)
2,4 , the spring parameters of S2,4 should satisfy

kS(2,4)

aS(2,4)

r2

bS(2,4)

r4

= kS(1,4)

bS(1,4)

r4

(35)

Also, the component that corresponds to KS(1,4)
3,4 is

KS(2,4)

3,4 = kS(2,4)

bS(2,4)

r4

cos(π − θ4) (36)

To fully balance KS(1,4)
3,4 , the spring parameters of S2,4 should satisfy

kS(2,4)

bS(2,4)

r4

= kS(1,4)

bS(1,4)

r4

(37)

The components KS(1,4)
2,4 and KS(1,4)

3,4 are balanced by S2,4 with (π , π ). However, the component KS(1,4)
2,3 ,

which cannot be balanced by S2,4, is still remained. In this case, the component of S2,4 that corresponds
to KS(1,4)

2,3 is

KS(2,4)

2,3 = kS(2,4)

aS(2,4)

r2

cos(−θ3) (38)

Comparing Eq. (38) with Eq. (32a), the angles in the cosine term are the same. Therefore, KS(2,4)
2,3

cannot be used to offset KS(1,4)
2,3 . It requires another non-ground-connected spring S2,3. The spring energy

of S2,3 is

US(2,3) =

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

∗ 0 0 0

∗ KS(2,4)

2,3 0

∗ 0

∗

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦ (39)

Spring S2,3 is attached between two adjacent links. According to previous sections, S2,3 should be
attached with angles that satisfy αS(2,3) − βS(2,3) = 0. The only component in the matrix is

KS(2,3)

2,3 = kS(2,3)

aS(2,3)

r2

bS(2,3)

r3

cos(π − θ3) (40)
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Figure 7. An admissible spring installation of a 3-DoF serial planar manipulator for balancing a
constant force.

Figure 8. A 3-DoF manipulator with multiple constant forces.

Comparing Eq. (40) with Eqs. (32a), (38), the spring parameters of S2,3 must satisfy

kS(2,3)

aS(2,3)

r2

bS(2,3)

r3

= kS(1,4) + kS(2,4)

aS(2,4)

r2

(41)

So far, the system is fully balanced, and an admissible spring installation is found. The installation of
springs is shown in Fig. 7.

4.2. Case 2: Balancing multiple constant forces
In case 2, there are multiple constant forces (f3 and f4) applied on the manipulator as shown in Fig. 8:

Similar to case 1, the potential work of f4 is fully balanced by a ground-connected spring S1,4 with
angles (ϕ4, 0). And the potential work of f3 is

Uf (3) =

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

0 Wf (3)

1,2 Wf (3)

1,3 0

0 0 0

0 0

0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

r1

r2

r3

r4

⎤
⎥⎥⎥⎥⎦ (42)
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Figure 9. An admissible spring installation of a 3-DoF serial planar manipulator for balancing
multiple constant forces.

Figure 10. (a) A planar 3-DoF grinding manipulator, (b) Spring attachment on a planar 3-DoF
grinding manipulator.

It requires a ground-connected spring S1,3 with angles (ϕ3, 0). To fully balance the components Wf (3)
1,2

and Wf (3)
1,3 , the spring parameters of S1,3 should satisfy

kS(1,3)

aS(1,3)

r1

bS(1,3)

r3

= f3

r1

s3

r3

(43a)

and

kS(1,3)

aS(1,3)

r1

= f3

r1

(43b)
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Table I. Spring parameters of the planar 3-DoFs grinding
manipulator.

S1,4 S2,3 S2,4

aS(i,j) 0.600 (m) 0.500 (m) 0.400 (m)
bS(i,j) 0.300 (m) 0.200 (m) 0.300 (m)
kS(i,j) 166.7 (N/m) 533.3 (N/m) 166.7 (N/m)

Figure 11. Energy of the planar 3-DoFs grinding manipulator during working process.

Same as case 1, a non-ground-connected spring S2,4 with (π , π ) is installed to balance the remaining
components KS(1,4)

2,4 and KS(1,4)
3,4 . Yet the ground-connected spring S1,3 also left a component

KS(1,3)

2,3 = kS(1,3)

bS(1,3)

r3

cos(−θ3) (44)

Therefore, comparing with S2,3 in case 1 which balances two components KS(1,4)
2,3 and KS(2,4)

2,3 , S′
2,3 in case

2 is required to balance three components KS(1,4)
2,3 , KS(2,4)

2,3 and KS(1,3)
2,3 . The constraints of spring parameters

of S′
2,3 are as follows:

k′
S(2,3)

a′
S(2,3)

r2

b′
S(2,3)

r3

= kS(1,4) + kS(2,4)

aS(2,4)

r2

+ kS(1,3)

bS(1,3)

r3

(45)

The system of case 2 is fully balanced, and the installation of springs is shown in Fig. 9:

5. An Illustrative Example: The Balancing of Resistance Force on a 3-DoFs Manipulator During
Grinding Process

5.1. Balancing single resistance force
In Fig. 10(a), a 3-DoFs grinding manipulator is given as an example. Here, only the DoFs on the x-y
plane are considered. Also, the grinding manipulator is simplified as a planar manipulator with revolute
joints only. The manipulator is placed horizontally on the ground, and the direction of gravitational
acceleration is assumed as the negative z direction. Assuming that during operation, the manipulator
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Figure 12. (a) A planar 3-DoF grinding manipulator working on the x-z plane, (b) Spring attachment
on the grinding manipulator for balancing multiple forces.

works at a slow constant speed. And reaction force f4 is assumed as a constant force applied on the end
effector (the end of link 4) in the negative x direction (ϕ4 = 0).

During the working process, the reaction force is usually resisted by actuators. When applying the
balancing method in this study, the reaction force is resisted by the springs. Therefore, the method theo-
retically decreases the load of the actuators. To apply the spring installation shown in Fig. 7, the springs
are attached on the manipulator as shown in Fig. 10(b). Here, to achieve ZFL springs in reality, we can
refer to ref. [32], in which the springs are attached with cable-pully systems. With the arrangement of
pullies, the distance between the two attachment points of a cable on the links equals the elongation of
spring, and ZFL is thereby accomplished.

The dimensions of the 3-DoFs grinding manipulator are given as: r2 = 0.4 (m), r3 = 0.4 (m) and
r4 = 0.3 (m). Furthermore, the reaction force applied on the end effector (link 4) is a constant value
f4 = 100 (N) in ϕ3 = 0 during operation. According to case 1 , to balance the reaction force f4, the con-
straints of springs’ parameters are Eqs. (29), (31), (35), (37) and (41). The spring parameters are found
accordingly and are shown in Table I.

Figure 11 is the simulation of system energy during the grinding process. It shows that the total energy
maintains a constant value, and theoretically, the spring-manipulator system is perfectly balanced.

5.2. Balancing gravity and resistance force
Figure 12(a) shows another example: the planar 3-DoF grinding manipulator works on the x-z plane.
Since the gravitational acceleration is in the negative z direction, besides the reaction force applied on
the end effector, links 2 and 3 also bear their own gravity. There are three forces (f2 = m2g in ϕ2 =
π/2, f3 = m3g in ϕ3 = π/2 and f4 in ϕ4 = 0) that need to be balanced.

According to case 2 in Section 4, the reaction force f4 in ϕ4 = 0 is balanced by the ground-connected
spring S1,4 with angles (0, 0). And the gravity f2 and f3 in ϕ2 = ϕ3 = π/2 can be balanced by another
ground-connected spring S1,3 with angles (π/2, 0). The spring installation is shown in Fig. 12(b).
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Table II. Spring parameters for balancing of multiple forces.

S1,4 S1,3 S2,3 S2,4

aS(i,j) 0.600 (m) 0.300 (m) 0.500 (m) 0.400 (m)
bS(i,j) 0.300 (m) 0.133 (m) 0.200 (m) 0.300 (m)
kS(i,j) 166.7 (N/m) 735.8 (N/m) 925.7 (N/m) 166.7 (N/m)

Figure 13. Energy of a planar 3-DoF grinding manipulator during working process in which gravity
and reaction force are balanced by springs.

The constraints of the ground-connected springs are

kS(1,4)

aS(1,4)

r1

bS(1,4)

r4

= f4

r1

s4

r4

(46a)

kS(1,4)

aS(1,4)

r1

= f4

r1

(46b)

kS(1,3)

aS(1,3)

r1

bS(1,3)

r3

= m3g

r1

s3

r3

(46c)

kS(1,3)

aS(1,3)

r1

= m2g

r1

s3

r3

+ m3g

r1

(46d)

And the non-ground-connected springs, S2,4 with (π , π ) and S2,3 with angles satisfying αS(2,3) −
βS(2,3) = 0, are used to balance the components that are remained by the ground-connected springs. The
constraints of the non-ground-connected springs are as follows.

kS(2,4)

aS(2,4)

r2

bS(2,4)

r4

= kS(1,4)

bS(1,4)

r4

(47a)

kS(2,4)

bS(2,4)

r4

= kS(1,4)

bS(1,4)

r4

(47b)

kS(2,3)

aS(2,3)

r2

bS(2,3)

r3

= kS(1,4) + kS(1,3)

bS(1,3)

r3

+ kS(2,4)

aS(2,4)

r2

(47c)
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From the constraints, the springs’ parameters on the manipulator are shown in Table II.
And the simulation of the system’s energy is shown in Fig. 13.
Note that, in real life application, the reaction force applied on the end effector of grinding may not

always be a constant value. Therefore, the spring-manipulator system can only be partially balanced.
Though it might not be free of limitations, the methodology in this paper decreases the loading of
actuators by using springs to compensate reaction forces.

6. Conclusion
The paper developed spring-balanced planar serial 3-DoF manipulators with revolute joints only for
constant forces in arbitrary directions. The energy is expressed in quadratic form, which shows the
balancing conditions clearly. In quadratic form, the components are function of springs’ stiffness and
attachment points. To ensure the springs are used for balancing, they have to be attached at specific
angles. The ideal spring attachment angles to balance constant forces in arbitrary directions are found.
That is, the ground-connected springs are attached with (ϕj, 0), where ϕj is the direction of the force;
and the non-ground-connected springs are attached with (0, 0) or (π , π ). Comparing with the spring-
gravity balanced manipulator proposed in the past research [18], balancing gravity and force in arbitrary
directions required two spring systems, which are differed in spring attachment angles.

Besides the angles, the springs must be installed at specific locations based on the balancing con-
ditions. The spring installation for balanced 3-DoF manipulators is explored accordingly. Finally, an
example of the balancing of resistance force on a planar 3-DoF manipulator during grinding process
is given, and the simulation shows that the manipulator can be perfectly balanced by the method. In
summary, this paper for the first time discusses the balancing of a manipulator with constant forces in
arbitrary directions, which expands the force balancing theory to broader application.
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