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A B S T R A C T   

Previous studies developed spring-gravity balancing methods for articulated manipulators using 
auxiliary links. However, these links caused extra inertia and motion interference. To address 
these issues, a spring balancing method based on the quadratic form was proposed. In this form, 
matrix components represent the energy change due to the manipulator’s posture, i.e., stiffnesses. 
Gravity balancing can be simplified as the summation of matrices that remain unchanged. 
However, the matrix component contains the polar angles, which can only describe the links’ 
direction on a plane, thus making this form applicable only to planar manipulators. To extend its 
applicability to spatial manipulators, we have reformulated it using local coordinates to describe 
the manipulator’s posture in space. The improved quadratic form can be applied to both planar 
and spatial manipulators, unifying energy representations of articulated manipulators. By ar-
ranging the springs to maintain a constant summation of matrices, energy balance is achieved. 
The criteria of spring attachment and the rules of using springs are proposed. Simulation of a 
spatial four-link manipulator show perfect balance can be achieved without auxiliary links using 
our approach.   

1. Introduction 

The technology of gravity compensation for physical mechanisms has been widely used for decades. It offers several advantages 
that have been discussed in the literature, such as decreasing the loading of actuators and improving machine efficiency. 

Many of the methods use counterweights or elastic elements such as springs to compensate for the gravitational force. For example, 
Woo [1] proposed a gravity balanced surgical manipulator that uses counterweights and springs. Agrawal [2] developed a method that 
adds auxiliary links to the manipulator to form parallelogram mechanisms that can identify the center-of-mass (COM) of the ma-
nipulators and the manipulator’s center of gravity can then be perfectly balanced by the attachment of springs. Also using an auxiliary 
parallelogram mechanism with the manipulator but instead of identifying the COM, Nathan [3] and Rahman [4] implemented it so as 
to form a “pseudo-base” that is always parallel to the ground-link; and with these pseudo-bases, the springs can individually balance 
each link. Nguyen [5] developed a method that uses gear-spring modules to compensate for the gravitational force of a planar 
manipulator. Jamshidifar [6] used a device composed of cables and pulleys and attached them to links, compensating for gravity using 
balancing elements such as a counterweight or spring. Li [7] developed an active and passive combined gravity compensation 
approach for a 6-DOF hybrid force feedback device. Kuo [8] proposed a balancing method using springs and cardan-gear mechanisms. 
Yet these methods require the use of counterweights, auxiliary links or additional devices, which brings other defects such as extra 
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inertia, motion interference and a reduced workspace. To fill in some of the gaps in the literature, Lee and Juang [9,10] developed a 
spring gravity balance method based on a quadratic form of energy representation, in which multiple springs can be directly attached 
to the manipulator, thereby systematically balancing the gravitational forces. 

The above methods can in fact perfectly balance the gravitational forces. However, they can only be applied on planar manipu-
lators. And for those balance methods on spatial manipulators, extra auxiliary links or devices are needed. For example, applying a 
similar concept as [2], Agrawal [11] further used an auxiliary parallelogram mechanism to identify a system’s COM and then used 
springs to achieve gravity balancing (as shown in Fig. 1. (a)), thereby expanding the usage of auxiliary parallelogram mechanisms to 
the balance of spatial manipulators. Lin [12] introduced an approach that extended the concept of the pseudo-base, as proposed by 
Nathan [3] and Rahman [4], to spatial manipulators. This method involves utilizing a spatial parallelogram 
revolute-spherical-spherical-revolute (RSSR) mechanism to create a pseudo-base (as depicted in Fig. 1 (b)). The pseudo-base is 
designed to follow the movement of each link and maintain perpendicularity to the ground. By attaching springs between the 
pseudo-bases and the links, it becomes possible to achieve individual balance for each link. This means that the manipulator can be 
balanced by attaching pseudo-bases and springs to all of its links. 

Several studies have applied the gravity balance concept to a wide variety of fields. For example, Wang [13] proposed the gravity 
compensation of a spatial parallel mechanism by using spring and counterweight; and Nguyen [14,15] balanced it by using spring-gear 
module. Banala [16] and Zhou [17] proposed a gravity balanced exoskeleton for a lower-limb, thereby decreasing user muscle work 
during walking. The similar concept was used on an upper-limb exoskeleton developed by Peng [18]. Several papers [19–22] studied 
the application of gravity compensation on human limb rehabilitation. For industrial applications, Alabdulkarim [23] developed an 
exoskeleton that balanced the weight of heavy tools using springs and counterweights. By using the gravity-balanced exoskeleton, 
workers are able to reduce the risk of being injured. Aldanmaz [24] developed a gravity balanced 2R1T (two rotations and one 
translation) mechanism composed of springs and counterweights and used it for surgical applications. Jin [25] proposed a gravity 
compensated haptic device for surgical robotics. In short, the technology of gravity compensation can be widely used and Fig. 2 shows 
several of its applications. 

Although Agrawal [11] and Lin [12] have proposed gravity balancing methods for spatial articulated manipulators, it should be 
noted that the inclusion of additional devices or auxiliary links can introduce additional drawbacks such as increased inertia in the 
mechanism. In contrast, our research focuses on developing a novel spring-gravity balance method that explicitly avoids the use of 
auxiliary devices and instead directly attaches springs to the spatial articulated manipulator. Furthermore, our method differs from 
Lin’s work [12], in that we do not balance each link individually. Instead, we employ a systematic approach to balance the entire 
spatial articulated manipulator using multiple springs. Our method is based on energy representation in quadratic form. The quadratic 
form proposed by [9,10] was originally applicable only to planar manipulators, as it was represented in terms of cosine with a polar 
angle. However, we have successfully extended the quadratic form to spatial articulated manipulators. This extension involved 
replacing the column vectors in the original form with unit vectors representing the local coordinates of each link in space. By doing so, 
we can accurately describe the positions of the links in three-dimensional space, making the quadratic form applicable to spatial 
manipulators for the first time. The extended quadratic form can also be applied to planar manipulators, as planar articulated ma-
nipulators can be seen as a special case of spatial articulated manipulators. This unifies the quadratic forms of both planar and spatial 
manipulators. The manipulators generally connected in series with spherical joints are considered in this paper. The extended 
quadratic form shown that the ground-connected springs cancel out the gravity. At the same time, they contribute part of the 
redundant energy. Therefore, non-ground-connected springs are used to balance this. The energy of the springs is a function of their 
parameters (including spring stiffness and the location at which they are attached). They determine whether the system is balanced or 
not. The criteria of spring attachment and rules for using springs are also proposed. By following them, the gravitational force of an 
arbitrary n-link spatial articulated manipulator can be perfectly balanced. 

The structure of this paper is as follows: first, the model of an arbitrary spatial articulated manipulator is built. Based on it, the 
gravitational energy of the manipulator and the elastic energy of the springs are derived. The energies are represented in quadratic 
form by a matrix representation, which shows the relationship between the energy and the posture of the manipulator clearly. Then, by 
comparing the gravitational energy matrix with the elastic energy matrix, the balancing conditions are determined. Following these 
conditions, the criteria of spring attachment and the rules for spring application are proposed, and the acceptable spring configurations 
to achieve gravity balance for three- and four-link spatial manipulators are listed. For demonstration purposes, a simulation of a spring- 

Fig. 1. Gravity balance of spatial articulated manipulators: (a) auxiliary parallelogram mechanism [11] and (b) pseudo-base formed by the RSSR 
auxiliary mechanism [12]. 
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balanced four-link spatial manipulator with springs is given as an example at the end of the paper, which verifies that the approach 
described in this study can balance the gravitational forces perfectly by attaching springs directly to the manipulator without addi-
tional links or auxiliary devices. 

2. Quadratic form of articulated manipulators 

2.1. Quadratic form of the planar articulated manipulators 

The past studies [9,10] have developed the spring balancing method that directly attached the springs to the manipulator without 
auxiliary devices. The method is based on the quadratic form of energy representation. The quadratic form is composed of column 
matrix and stiffness matrix. The column matrix describes the links’ distances, and the represents the energy change due to the ma-
nipulator’s position, i.e., stiffnesses. The stiffness matrix was used to be applied on spring system analysis. [9,10] have applied it to 
descript the gravitational energy, thereby expressed the gravitational energy and the springs’ energy in a compatible form. Gravity 
balancing can be simplified as the summation of matrices that remain unchanged. 

An example is given here to illustrate the gravitational energy representation in quadratic form. A planar articulated 4-link 

Fig. 2. Applications of gravity compensation technology: (a) industrial exoskeleton [23]; (b) spatial parallel mechanisms with spring-gear modules 
[14]; (c) spring balanced lower-limb exoskeleton [16]. 

Fig. 3. An example planar articulated 4-link manipulator.  
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manipulator is shown in Fig. 3. Where g is the gravitational acceleration. rj is the length of link j and mj is the mass of link j. The center 
of mass (COM) of a link was assumed to be on the connecting line of the link’s proximal joint and the distal joint. dj is the distance 
between the proximal joint and the COM of link j. θj is the rotation angle on the plane of link j. 

The gravitational energy of the example manipulator is 

Ug = m2gh2 + m3gh3 + m4gh4 (1) 

Where h2, h3 and h4 are the altitudes of the links 2, 3 and 4 respectively. 

h2 = d2sin(θ2) (2a)  

h3 = r2sin(θ2) + d3sin(θ2 + θ3) (2b)  

h4 = r2sin(θ2) + r3sin(θ2 + θ3) + d4sin(θ2 + θ3 + θ4) (2c) 

The gravitational energy of the manipulator can be written as 

Ug = g(d2m2 + r2(m3 +m4))sin(θ2)

+g(d3m3 + r3m4)sin(θ2 + θ3)

+gd4m4sin(θ2 + θ3 + θ4) (3)  

which is rewritten as, 

Ug = r1

[(
m2gd2

r1r2
+
(m3 + m4)g

r1

)

sin(θ2)

]

r2  

+r1

[(
m3gd3

r1r3
+

m4g
r1

)

sin(θ2 + θ3)

]

r2  

+r1

[
m4gd4

r1r4
sin(θ2 + θ3 + θ4)

]

r4 (4) 

And according to [9,10] it can be rearranged to quadratic form in matrix representation as follows 

Ug =

⎡

⎢
⎢
⎣

r1
r2
r3
r4

⎤

⎥
⎥
⎦

T

Gp

⎡

⎢
⎢
⎣

r1
r2
r3
r4

⎤

⎥
⎥
⎦ (5)  

where 

Gp =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 Gp
1,2 Gp

1,3

0 0 0
0 0 0
0 0 0

Gp
1,4

0
0
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6)  

and 

Gp
1,2 =

(
m2gd2

r1r2
+
(m3 + m4)g

r1

)

sin(θ2) (7a)  

Gp
1,3 =

(
m3gd3

r1r3
+

m4g
r1

)

sin(θ2 + θ3) (7b)  

Gp
1,4 =

m4gd4

r1r4
sin(θ2 + θ3 + θ4) (7c) 

The energy is length squared times stiffness, in Eq. (5), the column matrix is the link length, and Gp is the gravitational stiffness 
matrix. The components (Eq. (7a~c)) represent the energy change due to the manipulator’s posture, i.e., stiffnesses. The springs’ 
energy can also be represented in the quadratic form with stiffness matrix. Therefore, the gravitational energy and the springs’ energy 
are compatible. Gravity balancing can be simplified as the summation of stiffness matrices that remain unchanged. By arranging the 
springs’ installation, as all the components Gp

1,2 and KS(i,j)
i,j are offset, the gravity is balanced. 
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In this form, the polar angles θ2, θ3 and θ4 in cosine are used to describe the posture of links. However, they can only be applied to 
planar articulated manipulators. The quadratic form is for the first time extended to spatial articulated manipulator in the following 
section. 

2.2. Quadratic form of the spatial articulated manipulator 

To extend the quadratic form to spatial articulated manipulator, a model of the spatial articulated manipulator is built. Fig. 4 shows 
a general spatial articulated manipulator. We assumed that the links of the manipulator were connected in series with spherical joints, 
which completely contained all three rotational degrees of freedom (DOF) of the space. The friction in the joints was neglected. As 
shown in Fig. 4, the Denavit-Hartenberg representation was applied. The local coordinate system of link j sets the unit vector x̂j as the 
direction in which proximal joints point to the distal joints. g is the gravitational acceleration, which direction is negative in relation to 
the unit vector x̂1. rj is the length of link j and mj is the mass of link j. To simplify the model, the center of mass (COM) of a link was 
assumed to be on the connecting line of the link’s proximal joint and the distal joint. dj is the distance between the proximal joint and 
the COM of a link j and hj is the altitude of the COM of link j from the zero potential plane (here we set the ŷ1-ẑ1 plane as the zero 
potential plane). 

Based on the model, the energy representation was developed as shown in the following sections. 

2.2.1. Gravitational energy in quadratic form 
For a link j, its gravitational energy is Uj

g = mjghj, where hj can be expressed as the projection of links’ position to the vector x̂1. 
According to Fig. 4, the altitude of link j can be expressed as: 

hj =

(

dj x̂j +
∑j− 1

w=2
rw x̂w

)

⋅ x̂1 (8) 

The total gravitational energy of an n-link spatial manipulator is Ug =
∑

mjghj, from Eq. (8), it can be generally expressed as: 

Ug =
∑n

t=2
mtg

(

dt x̂t +
∑t− 1

w=2
rw x̂w

)

⋅ x̂1 (9) 

Equation (9) can be expanded as: 

Ug =

(

m2gd2 + r2g
∑n

t=3
mt

)

x̂1 ⋅ x̂2 +

(

m3gd3 + r3g
∑n

t=4
mt

)

x̂1 ⋅ x̂3 + …  

+

(

mjgdj + rjg
∑n

t=j+1
mt

)

x̂1 ⋅ x̂j + … + (mngdn)x̂1 ⋅ x̂n (10) 

Fig. 5 shows an illustrative example of a four-link spatial articulated manipulator. 
From Eq. (10), its gravitational energy is: 

Fig. 4. Modeling of a general spatial articulated manipulator with spherical joints.  
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Ug = (m2gd2 +(m3 +m4)r2g)x̂1 ⋅ x̂2 + (m3gd3 +m4r3g)x̂1 ⋅ x̂3  

+(m4gd4)x̂1 ⋅ x̂4 (11) 

In it, each term denotes a part of the gravitational energy, the inner production x̂1 ⋅ x̂2 denotes the relative posture between Link 1 
and Link 2 an (m2gd2 +(m3 +m4)r2g) is its coefficient; and so on for the rest of the terms. We can express Eq. (11) by the matrix 
representation: 

Ug =

⎡

⎢
⎢
⎣

x̂1
x̂2
x̂3
x̂4

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0 G1,2 G1,3
0 0 0
0 0 0
0 0 0

G1,4
0
0
0

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

x̂1
x̂2
x̂3
x̂4

⎤

⎥
⎥
⎦ (12)  

where the components in the matrix are: 
⎧
⎨

⎩

G1,2 = m2gd2 + (m3 + m4)r2g
G1,3 = m3gd3 + m4r3g

G1,4 = m4gd4

(13) 

Thus, the matrix representation clearly shows the relationship between the gravitational energy and the posture of the manipulator. 
Each component in the matrix denotes the coefficient of a part of the energy that relates to the links’ relative positions in the space. For 
example, G1,2 denotes the coefficient of partial gravitational energy that depends on the relative posture between Link 1 (the ground 
link) and Link 2. 

According to the example mentioned above, the gravitational energy of a general n-link spatial manipulator (Eq. (10)) can be 
presented in quadratic form by the matrix representation: 

Ug = XT GX (14)  

where X is an n × 1 column vector: 

X =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂1
x̂2
⋮
x̂j
⋮
x̂n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(15)  

and G is an n × n square matrix with non-zero components in the first row only: 

G =

⎡

⎢
⎢
⎣

0 G1,2 G1,3
0 0 0
⋮ ⋮ ⋮
0 0 0

… G1,n
0 0
⋮ ⋮
0 0

⎤

⎥
⎥
⎦

n×n

(16)  

where the non-zero components in G are as follows, being functions of the manipulator parameters (i.e., link length and mass): 

Fig. 5. Example of a four-link spatial articulated manipulator with spherical joints.  
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⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

G1,2 = m2gd2 + r2g
∑n

t=3
mt

G1,3 = m3gd3 + r3g
∑n

t=4
mt

⋮
G1,n = gmndn

(17)  

which can be generally expressed as: 

G1,j = g

(

mjdj + rj

∑n

t=j+1
mt

)

(18) 

Here, the gravitational energy is reformulated, where the relative postures of the links are expressed in terms of the inner product of 
the links’ local coordinates. The representation of gravitational energy in quadratic form is thus simplified and extended to spatial 
articulated manipulators. 

The springs’ elastic energy can also be expressed in quadratic form as discussed in the following section. 

2.2.2. Elastic energy of a spring in quadratic form 
Fig. 6 shows an arbitrary tension spring attached between Links i and j (i < j), represented as Si,j. Where Link i is the proximally 

attached link and Link j is the distally attached link. aS(i,j) is the distance between the proximal point at which the spring is attached and 
the distal joint of Link i and âS(i,j) is its direction. bS(i,j) is the distance between the distal point at which the spring is attached and the 

proximal joint of Link j and b̂S(i,j) is its direction. 
The spring is assumed as an ideal zero-free-length spring (ZFL), which means that its elongation is assumed to be equal to its length, 

and it has no initial length when it is in a relaxed state. This idealized model allows for simplified analysis and calculations in this paper 
of spring balance methods for manipulators. 

The elongation of Si,j is expressed as: 

lS(i,j) =

⃒
⃒
⃒
⃒
⃒
− aS(i,j) âS(i,j) + bS(i,j) b̂S(i,j) +

∑j− 1

t=i+1
rt x̂t

⃒
⃒
⃒
⃒
⃒

(19) 

The elastic energy of spring Si,j is US(i,j) = 1
2kS(i,j) l2S(i,j), and by substituting in Eq. (19), the elastic energy can be expressed as: 

US(i,j) =
1
2
kS(i,j)

(

− aS(i,j) âS(i,j) + bS(i,j) b̂S(i,j) +
∑j− 1

t=i+1
rt x̂t

)

⋅

(

− aS(i,j) âS(i,j) + bS(i,j) b̂S(i,j) +
∑j− 1

t=i+1
rt x̂t

)

(20) 

Expanding Eq. (20) as: 

US(i,j) = CS(i,j) + KS(i,j)
i,j âS(i,j) ⋅ b̂S(i,j) +

∑j− 1

v=i+1
KS(i,j)

i,v âS(i,j) ⋅ x̂v 

Fig. 6. Tension spring attached to a spatial articulated manipulator.  
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+
∑j− 1

u=i+1
KS(i,j)

u,j x̂u ⋅ b̂S(i,j) +
∑j− 2

u=i+1

∑j− 1

v=u+1
KS(i,j)

u,v x̂u ⋅ x̂v (21)  

where 

CS(i,j) =
1
2

kS(i,j)

(

a2
S(i,j) + b2

S(i,j) +
∑j− 1

t=i+1
r2

t

)

(22)  

KS(i,j)
i,j = − kS(i,j)aS(i,j)bS(i,j) (23a)  

KS(i,j)
i,v = − rvkS(i,j)aS(i,j) for v < j (23b)  

KS(i,j)
u,v = rurvkS(i,j) for u > i; v < j (23c)  

KS(i,j)
u,j = rukS(i,j)bS(i,j) for u > i (23d) 

Comparing Eq. (21) with Eq. (10), the spring elastic energy is observed to be in similar form to the gravitational energy. Therefore, 
it can also be represented in the quadratic form: 

US(i,j) = YT KS(i,j)Y (24)  

where Y is an n × 1 column vector: 

Y =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x̂1

⋮

âS(i,j)

x̂i+1

⋮

x̂j− 1

b̂S(i,j)

⋮

x̂n

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(25)  

and KS(i,j) is an n × n square matrix with non-zero components located at the area bounded by row i, column j, and the diagonal. KS(i,j) is 
as: 

Fig. 7. Example spring attached between the ground link and the fourth link.  
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KS(i,j) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 … 0 0
0 0 ⋱ … 0
0 ⋮ ∗ KS(i,j)

i,i+1 … KS(i,j)
i,j

∗ KS(i,j)
u,v ⋮ ⋮ ⋮

⋮ ⋮ ∗ KS(i,j)
j− 1,j

∗ ⋱ 0
0 0

0 0 … 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(26) 

The non-zero components of the matrix KS(i,j) are presented in Eqs. (22) and (23a~d), which are functions of the spring parameters 
(i.e., the spring stiffness kS(i,j) and the spring attachment distances aS(i,j) and bS(i,j)). The position of these components shows that Si,j has 
an effect on all the links between links i and j. The “∗” components in the diagonal are the constant terms in Eq. (22). 

A spring attached between the ground link and the fourth link (S1,4) as shown in Fig. 7 is given as an example below. 
According to Eq. (21), the elastic energy of S1,4 is: 

US(1,4) = CS(1,4) + KS(1,4)
1,4 âS(1,4) ⋅ b̂S(1,4) + KS(1,4)

1,3 âS(1,4) ⋅ x̂3 + KS(1,4)
1,2 âS(1,4) ⋅ x̂2  

+KS(1,4)
2,4 x̂2 ⋅ b̂S(1,4) + KS(1,4)

3,4 x̂3 ⋅ b̂S(1,4) + KS(1,4)
2,3 x̂2 ⋅ x̂3 (27)  

where 

CS(1,4) =
1
2
kS(1,4)

(
a2

S(1,4) + b2
S(1,4) + r2

2 + r2
3

)
(28a)  

KS(1,4)
1,4 = − kS(1,4)aS(1,4)bS(1,4) (28b)  

KS(1,4)
1,3 = − kS(1,4)aS(1,4)r3 (28c)  

KS(1,4)
1,2 = − kS(1,4)aS(1,4)r2 (28d)  

KS(1,4)
2,4 = kS(1,4)r2bS(1,4) (28e)  

KS(1,4)
3,4 = kS(1,4)r3bS(1,4) (28f)  

KS(1,4)
2,3 = kS(1,4)r2r3 (28g) 

This can be expressed in quadratic form. 

Fig. 8. Two-link spatial manipulator with spring S1,2.  
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US(1,4) =

⎡

⎢
⎢
⎣

âS(1,4)
x̂2
x̂3

b̂S(1,4)

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

∗ KS(1,4)
1,2 KS(1,4)

1,3

0 ∗ KS(1,4)
2,3

0 0 ∗

0 0 0

KS(1,4)
1,4

KS(1,4)
2,4

KS(1,4)
3,4

∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎣

âS(1,4)
x̂2
x̂3

b̂S(1,4)

⎤

⎥
⎥
⎦ (29) 

The quadratic form of the energies has thus been presented. How to use springs to achieve the gravity balancing of a spatial ar-
ticulated manipulator is discussed in the next section. 

3. Gravity balancing of spatial articulated manipulators by use of springs 

3.1. Gravity balancing conditions 

To achieve the gravity balancing of the spatial manipulator by use of springs, the summation of the manipulator’s gravitational 
energy and the springs’ elastic energy should be constant, which can be expressed as: 

Ug +
∑

US(i,j) = const. (30) 

An example of a two-link spatial manipulator with a spring S1,2 is shown in Fig. 8, given to illustrate the balancing conditions: 
According to Eq. (14) and Eq. (24) the gravitational energy and the elastic energy can be expressed as: 

Ug =

[
x̂1
x̂2

][
0 G1,2
0 0

][
x̂1
x̂2

]

(31)  

US(1,2) =

[
âS(1,2)

b̂S(1,2)

][
∗ KS(1,2)

1,2

0 ∗

][
âS(1,2)

b̂S(1,2)

]

(32)  

where 

G1,2 = m2gd2 (33a)  

KS(1,2)
1,2 = − kS(1,2)aS(1,2)bS(1,2) (33b) 

Then, the balancing condition can be expressed as: 
[

x̂1
x̂2

][
0 G1,2
0 0

][
x̂1
x̂2

]

+

[
âS(1,2)

b̂S(1,2)

][
∗ KS(1,2)

1,2

0 ∗

][
âS(1,2)

b̂S(1,2)

]

= const. (34) 

Since the terms “∗” on the diagonal of Eq. (34) are constants, they are negligible. The coefficients G1,2 and KS(1,2)
1,2 are functions of the 

manipulator and the spring parameters. And the bases of them are x̂1 ⋅ x̂2 and âS(1,2) ⋅ b̂S(1,2) respectively, which are change due to the 
posture of manipulator. Therefore, to keep Eq. (34) a constant, the bases should be the same and the coefficients G1,2 and KS(1,2)

1,2 should 
cancel each other out. The balancing condition can then be simplified as: 

[
âS(1,2)

b̂S(1,2)

]

=

[
x̂1
x̂2

]

(35a)  

G1,2 + KS(1,2)
1,2 = 0 (35b) 

To attain Eq. (35a), the spring must be installed along x̂1 and x̂2 (i.e., the spring must be installed at the connecting line of the link’s 
joints), which is at âS(1,2) = x̂1 and b̂S(1,2) = x̂2. 

For Eq. (35b), according to Eqs. (33a, b), the required spring parameters are found: 

kS(1,2)aS(1,2)bS(1,2) = m2gd2 (36) 

Compared with previous works [9], the spring installation requirement (Eq. (36)) to balance a two-link spatial manipulator as 
solved above has the same requirements, and here we offer further demonstration that the spring must be installed along the con-
necting line of the link’s joints. 

The spring installation requirements for balancing can be further extended to an arbitrary spatial articulated manipulator where 
âS(i,j) = x̂i and b̂S(i,j) = x̂j, making the column vectors X and Y compatible. According to Eq. (14) and Eq. (24), the balancing condition 
of a spatial manipulator can be presented in quadratic form as: 
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XT GX +
∑

YT KS(i,j)Y = const. (37) 

To satisfy this, the column vectors X and Y should be compatible, that is: 

X = Y (38)  

and the summation of components of the square matrices G and KS(i,j) should cancel each other out. As mentioned in Section 2, it is 
known that the non-zero components of G are located in the first row only (Eq. (16)); and the non-zero components of KS(i,j) are located 
in the area bounded by row i, column j, and the diagonal (Eq. 26). Therefore, the condition can be further rewritten as: 

G1,j +
∑

KS(1,v)
1,j = 0 for v ≥ j > 1 (39a)  

∑
KS(u,v)

i,j = 0 for i ≥ u ≥ 1; v ≥ j > 1 (39b) 

Equations (39a, b) are the balancing equations which determine the spring parameters. 
In summary, the basic principles to balance a spatial manipulator using springs are: 

P1. The springs must be installed on the connecting line of the joints (Eq. (38)). 
P2. The spring parameters must satisfy the balancing equations to completely cancel out the gravitational energy (Eqs. (39a, b)). 

A detailed description of applying these principles to an arbitrary spatial manipulator are discussed in the following sections. 

3.2. Criteria of spring attachment 

From Eq. (26), it is known that only a spring connected to the ground (referred to as a ground-connected spring) can contribute the 
components (KS(1,v)

1,j ) that locate at the first row and correspond to the components of gravity (G1,j). Therefore, only the ground- 
connected springs are related to the balancing equation Eq. (39a). To ensure the ground-connected springs contribute to balancing 
rather than burdening the system, all the components contributed by the ground-connected springs (KS(1,v)

1,j ) should be negative in 
relation to the components of gravity (G1,j), which are always positive. Therefore, the requirements of the ground-connected spring 
components are known: 

⎧
⎨

⎩

KS(1,j)
1,j < 0

KS(1,j)
1,v < 0

(40) 

From Eqs. (23a, b) and (40), to guarantee that a ground-connect spring contributes to balancing, the attachment distance must 
satisfy: 

{
aS(1,j) > 0
bS(1,j) > 0 (41) 

Here we present Eq. (40) as (aS(1,j),bS(1,j)) = (+ , + ), taking into account P1, where the springs must be attached on the connecting 
line of the link joints, and an arbitrary ground-connected springs must be attached as shown in Fig. 9. 

Note that a special case can be considered for a spring S1,2 that contributes only one component KS(1,2)
1,2 , and therefore a spring 

attachment with (aS(1,2), bS(1,2)) = (+,+) or (− , − ) is also allowed. 

Fig. 9. Attachment of a ground-connected spring with (aS(1,j), bS(1,j)) = (+ , + ).  
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Other than the components in the first row of the matrix, which correspond to G1,j, a ground-connected spring contains non-first 
row components that need to be balanced by other springs. Therefore, springs must be installed between two non-ground links 
(referred to as non-ground-connected springs). 

Similar to the ground-connected springs, the non-ground-connected springs need to contribute to balancing. Therefore, the 
components of a non-ground-connected spring need to be negative in relation to the remaining components of the ground-connected 
springs. According to Eqs. (23a~d), the components of a non-ground-connected spring cannot all be negative at the same time but 
there can be at most two types of components with a negative value at the same time. The acceptable attachments for an arbitrary non- 
ground-connected spring are shown in Fig. 10. 

The criteria of spring attachment for a spatial manipulator are thus provided. The past study [10] has proposed the spring 
attachment criteria for planar manipulators that use springs to achieve gravity balance without auxiliary links. A comparison of spring 
attachment criteria between the planar manipulator and the spatial manipulator is discussed below. 

For a planar manipulator, the manipulator’s links move on a plane only (here we take the x̂i-ŷi plane). The column vectors X and Y 
are still need to be compatible, that is, the springs are attached on the connecting line of the joints generally, which is the same as for a 
spatial manipulator. However, there is a special case: when a spring is attached between the two adjacent links i and i +1 as shown in 
Fig. 11 (referred to as “mono-articulated springs”; springs attached between two non-adjacent links are referred to as “multi-articu-
lated springs”), where Θâ,b̂ denotes the angles between the unit vectors âS(i,i+1) and b̂S(i,i+1) and Θx̂i,x̂i+1 denotes the angles between the 
unit vectors x̂i and x̂i+1. 

The bases should be the same, that is âS(i,i+1) ⋅ b̂S(i,i+1) = x̂i ⋅ x̂i+1, it can be rewritten as: 
⃒
⃒âS(i,i+1)

⃒
⃒
⃒
⃒b̂S(i,i+1)

⃒
⃒cos

(
Θâ,b̂

)
= |x̂i||x̂i+1|cos

(
Θx̂i,x̂i+1

)
(42) 

âS(i,i+1), b̂S(i,i+1), x̂i, and x̂i+1 are unit vectors, therefore, Eq. (42) can be simplified as: 

Fig. 10. Acceptable attachments for an arbitrary non-ground-connected spring.  
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Θâ,b̂ = ±Θx̂i,x̂i+1 (43)  

and from Fig. 11 it is known that: 

Θâ,b̂ = θα −
(
Θx̂i,x̂i+1 + θβ

)
(44) 

Solving Eq. (43) and Eq. (44), the required mono-articulated spring attachment angles are thus determined: 

θα − θβ = 0 (45) 

It is thus shown that if a mono-articulated spring is used on a planar manipulator, its attachment should satisfy the condition θα − θβ 

= 0. This means that a mono-articulated spring does not need to be attached on the connecting line of the joints. Fig. 12. shows an 
example of a feasible mono-articulated spring attachment to a planar manipulator with θα = θβ = 45∘. 

The attachment condition of a mono-articulated spring to planar manipulator is thus shown here as the same as that determined by 
[10]. 

In summary, the comparison of spring attachments between spatial and planar manipulators revealed that they differ in their 
required attachments of mono-articulated springs. For planar manipulators, multi-articulated springs must be attached on the con-
necting line of the joints, whereas mono-articulated springs do not need to be, however, the attachment angles must meet the condition 
θα − θβ = 0. For spatial manipulators, both mono-articulated springs and multi-articulated springs are required to be attached on the 
connecting line of the joints. 

The criteria of spring attachment are thus provided. For a spatial-articulated manipulator, the ground-connected springs are 
attached with (aS(1,j),bS(1,j)) = (+ ,+ ); and the non-ground-connected springs are attached with (aS(i,j), bS(i,j)) = (+,+), (− , − ) or (+ , −

). It is observed that there are multiple options for attaching a spring. The next section will discuss how to select the spring attachments 
and determine which links should have springs installed in order to form a gravity-balancing spring configuration. 

3.3. Spring installation rules and acceptable spring configurations 

The springs should be installed on specific links to achieve gravity balance. As mentioned in the previous section, the ground- 
connected springs are used to balance the gravity. According to Eq. (39a), all the non-zero components of the gravitational energy 
matrix G must be offset by the ground-connected spring components to achieve balance. For an n-link manipulator, its gravitational 

Fig. 11. Mono-articulated spring attached to a planar manipulator.  

Fig. 12. Example of a mono-articulated spring attachment to a planar manipulator.  
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energy matrix contains n − 1 non-zero components: G1,2, G1,3…G1,n. The component G1,n can only be fully offset by a ground- 
connected spring S1,n, which can contribute the corresponding elastic energy matrix component KS(1,n)

1,n . The first rule of ground- 
connected spring installation for an n-link spatial articulated manipulator is thus: 

R1: A ground-connected spring must be installed between the ground link and the end link (Link n) S1,n. 

The component G1,n is thereby fully offset. The component G1,n− 1 can also be fully offset by S1,n, since S1,n can contribute the 
corresponding elastic energy matrix component KS(1,n)

1,n− 1. The next component, G1,n− 2, can only be partially offset. That is because 
G1,n− 1 ∕= G1,n− 2 (according to Eq. (17)) and the balancing condition cannot fulfill both at the same time by arranging the spring 
attachment. Therefore, another spring S1,n− 2 is required to fully offset G1,n− 2 and the next component G1,n− 3. Generally, for the 
component G1,j where j < n, it must be fully offset by the spring S1,j or S1,j+1. The second rule of ground-connected spring installation is 
thus: 

R2: There must be at least one ground-connected spring for every two links. 

As the ground-connected springs are installed, the gravitational energy matrix components G1,2, G1,3…G1,n become fully offset. 
However, the ground-connected springs still contribute additional components below the first row that need to be offset by the non- 
ground-connected springs to satisfy the balancing equation Eq. (39b). According to Fig. 10, the non-ground-connected springs can be 
attached in three different ways, with each type of attachment contributing balancing components at different locations. For the non- 
ground-connected spring attached with (aS(i,j),bS(i,j)) = (+ ,+ ), it contributes balancing components KS(i,j)

i,j and KS(i,j)
i,v for v < j; for (aS(i,j),

bS(i,j)) = ( − , − ), it contributes KS(i,j)
i,j and KS(i,j)

u,j for u > i; and for (aS(i,j),bS(i,j)) = (+ , − ), it contributes KS(i,j)
i,v and KS(i,j)

u,j . According to 
Eqs. (23c, d), R1 and R2, the remaining components below the first row are known, and the general rules to follow such that the non- 
ground-connected springs fully offset the remaining components are as follows: 

R3: To offset the unbalanced component KS(1,n)
2,n , at least one non–ground-connected spring S2,n with (aS(2,n), bS(2,n)) = (+,+) or 

(− , − ) should be installed. 
R4: To offset the unbalanced components located at (2, j) for n > j > 2, at least one non–ground-connected spring S2,j with (aS(2,j),

bS(2,j)) = (+,+) or (− , − ) or S2,j+1 with (aS(2,j+1), bS(2,j+1)) = (+,+) or (+, − ) should be installed. 
R5: To offset the unbalanced components located at (i, n) for i > 2, at least one non–ground-connected spring Si,n with (aS(i,n), bS(i,n))

= (+,+) or (− , − ) or Su,n for i > u > 1 with (aS(u,n), bS(u,n)) = (− , − ) or (+, − ) should be installed. 
R6: To offset the unbalanced components located at (i, j) for i > 2; j < n, at least one non–ground-connected spring Si,j with (aS(i,j),

bS(i,j)) = (+,+) or ( − , − ), or Si,j+1 with (aS(i,j+1), bS(i,j+1)) = (+,+) or (+ , − ), or Su,j for u < i with (aS(u,j), bS(u,j)) = (− , − ) or (+, − )

should be installed. 

R3~R6 are the installation rules for non-ground-connected springs. The specific rule to apply is determined based on the location of 
the unbalanced components remaining in the matrix. If all the unbalanced components correspond to the balancing components, it 
indicates that an acceptable spring configuration has been identified. 

A four-link spatial articulated manipulator shown in Fig. 5 is given as an example. According to Eq. (12), the components of G are 
G1,2, G1,3 and G1,4, which should be balanced by the components that contributed by the ground-connected springs. From R1, a spring 
S1,4 with (aS(1,4), bS(1,4)) = (+,+) must be installed, and from R2, at least one ground-connected spring must be attached to link 2 or/ 
and link 3, that is, S1,2 with (aS(1,2), bS(1,2)) = (+,+) or (− , − ) or/and S1,3 with (aS(1,3),bS(1,3)) = (+ ,+ )) must be installed. By installing 
the ground-connected springs according to the specified rules, the components G1,2, G1,3 and G1,4 can be balanced. However, it should 
be noted that the ground-connected springs also contribute non-first row components that need to be balanced by the non-ground- 
connected springs, as mentioned earlier. 

According to R3, a non-ground-connected spring S2,4 with (aS(2,4), bS(2,4)) = (+,+) or (− , − ) must be installed. Two conditions are 
discussed:  

1. If S2,4 with (aS(2,4), bS(2,4)) = (+,+) is installed, it contributes balancing components KS(2,4)
2,4 and KS(2,4)

2,3 . However, it also contains a 

component KS(2,4)
3,4 that needs to be balanced by another non-ground-connected spring. Therefore, R5 is applied: S3,4 with (aS(3,4),

bS(3,4)) = (+,+) or (− , − ) or/and S′
2,4 with (aS′(2,4), bS′(2,4)) = (− , − ) or (+ , − ) should be installed.  

2. If S2,4 with (aS(2,4), bS(2,4)) = (− , − ) is installed, it contributes balancing components KS(2,4)
2,4 and KS(2,4)

3,4 , while KS(2,4)
2,3 needs to be 

balanced. Therefore, R4 is applied: S2,3 with (aS(2,3), bS(2,3)) = (+,+) or (− , − ) or/and S′
2,4 with (aS′(2,4), bS′(2,4)) = (+,+) or (+, − )

should be installed. 

Up to this point, there are no remaining components that need to be balanced in the system. All of them correspond to at least one 
balancing component, indicating that balance can be achieved. The example demonstrates that there are multiple possible spring 
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configurations for a 4-link manipulator. Fig. 13 (a) and (b) are branch diagrams illustrating the choices of spring installation: 
From the rules detailed above, the acceptable spring configurations for three-link and four-link spatial articulated manipulators are 

listed below; note that only the configurations with necessary springs are shown in Table 1. However, as illustrated in Fig. 13, there are 
actually more choices available to balance a 4-link manipulator by installing additional springs. Users have the flexibility to add extra 
springs to these configurations based on their design requirements and constraints. The manipulator can still be perfectly balanced as 
long as the balancing equations are satisfied. 

In the configuration matrix shown in Table 1, the column and row number respectively denote the proximally attached link and the 
distally attached link of the springs; the symbol “0” indicates that there is no spring between the links; the symbol 1(+,+) indicates that a 
spring Si,j with (aS(i,j), bS(i,j)) = (+,+) is attached; 1(+,+)/(− ,− ) means that a spring attached between the links with (aS(i,j), bS(i,j)) = (+,+)

or (− , − ) is allowed. 
The installation rules and acceptable spring configurations for an arbitrary spatial articulated manipulator were developed in this 

Fig. 13. The choices of spring installation for a 4-link spatial articulated manipulator.  

C.-W. Juang et al.                                                                                                                                                                                                     



Mechanism and Machine Theory 191 (2024) 105497

16

section. In the following section, an example of a spring-gravity balanced four-link spatial articulated manipulator is shown. 

4. Examples: gravity balancing of a four-link spatial articulated manipulator 

A four-link spatial articulated manipulator with spherical joints only is given as an example. The dimensions and mass of the links 
are shown in Table 2. 

The springs were attached to the manipulator according to one of the configurations in Table 1: 
⎡

⎢
⎢
⎣

∗ 1(+,+) 0 1(+,+)

∗ 0 1(+,+)

∗ 1(− ,− )

∗

⎤

⎥
⎥
⎦ (46) 

Specifically, two ground-connected springs, S1,2 and S1,4 with (aS(i,j),bS(i,j)) = (+ , + ), and two non-ground-connected springs, S2,4 

with (aS(i,j), bS(i,j)) = (+,+) and S3,4 with (aS(i,j), bS(i,j)) = (− , − ) were attached. 
Fig. 14 shows this example manipulator. 
To achieve balance, the components of the springs must satisfy the Eqs. (39a, b) as follows: 

G1,4 + KS(1,4)
1,4 = 0 (47a)  

G1,3 + KS(1,4)
1,3 = 0 (47b)  

G1,2 + KS(1,4)
1,2 + KS(1,2)

1,2 = 0 (47c)  

KS(1,4)
2,4 + KS(2,4)

2,4 = 0 (47d)  

KS(1,4)
2,3 + KS(2,4)

2,3 = 0 (47e)  

KS(1,4)
3,4 + KS(2,4)

3,4 + KS(3,4)
3,4 = 0 (47f) 

And according to Eq. (18) and Eqs. (23a~d), they can be expanded as 

kS(1,4)aS(1,4)bS(1,4) = m4gd4 (48a)  

kS(1,4)aS(1,4)r3 = m3gd3 + m4r3g (48b)  

Table 1 
Acceptable spring configurations with necessary springs for three-link and four-link spatial artic-
ulated manipulators.   

Acceptable spring configurations with necessary springs 

n = 3 
⎡

⎣
− 0 1(+,+)

− 1(+,+)/(− ,− )

−

⎤

⎦

n = 4 ⎡

⎢
⎢
⎣

− 1(+,+)/(− ,− ) 0 1(+,+)

− 1(+,+)/(− ,− ) 1(− ,− )

− 0
−

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

− 0 1(+,+) 1(+,+)

− 1(+,+)/(− ,− ) 1(− ,− )

− 0
−

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

− 1(+,+)/(− ,− ) 0 1(+,+)

− 0 1(+,+)

− 1(+,+)/(− ,− )

−

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

− 0 1(+,+) 1(+,+)

− 0 1(+,+)

− 1(+,+)/(− ,− )

−

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

− 1(+,+)/(− ,− ) 0 1(+,+)

− 0 1(+,− ),1(+,+)

− 0
−

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

− 0 1(+,+) 1(+,+)

− 0 1(+,− ) ,1(+,+)

− 0
−

⎤

⎥
⎥
⎦

Table 2 
Dimension and mass of the example spatial articulated manipulator.  

Link’s number length Mass center mass 

2 r2 = 0.30 (m) d2 = 0.15 (m) m2 = 4.0 (kg)
3 r3 = 0.24 (m) d3 = 0.12 (m) m3 = 3.2 (kg)
4 r4 = 0.20 (m) d4 = 0.10 (m) m4 = 2.8 (kg)
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kS(1,4)aS(1,4)r2 + kS(1,2)aS(1,2)bS(1,2) = m2gd2 + (m3 +m4)r2g (48c)  

kS(1,4)r2bS(1,4) − kS(2,4)aS(2,4)bS(2,4) = 0 (48d)  

kS(1,4)r2r3 − kS(2,4)aS(2,4)r3 = 0 (48e)  

kS(1,4)r3bS(1,4) + kS(2,4)r3bS(2,4) − kS(3,4)aS(3,4)bS(3,4) = 0 (48f) 

Solving, the attachment parameters of the springs were determined and are shown in Table 3. 
With the springs thus applied, the gravitational force of the example manipulator is theoretically balanced throughout its entire 

workspace. To prove this, an arbitrary manipulator trajectory was simulated and is shown in Fig. 15. The initial posture and rotation of 
each joint are listed in Table 4Table 5, where θi, ϕi and ψ i represent the angular displacement of the links with respect to the x̂i− 1, ŷi− 1 
and ẑi− 1 coordinates, respectively. And the manipulator’s end effector can be seen to move from the starting point to the end point in 
30 seconds. 

Fig. 16 shows the gravitational energy of the manipulator, the spring elastic energy and the total energy during the trajectory. 
As mentioned in the previous section, our approach is applicable to both spatial and planar articulated manipulators. Here, we 

provide another example trajectory that exhibits only planar motion in the x̂0- ẑ0 plane, considering only the rotation around the ŷi 
axis (i.e., ϕi). The trajectory of the articulated manipulator is given as follows: 

Fig. 17 illustrates the variation of the gravitational energy, springs’ elastic energy, and total energy of the manipulator throughout 
the planar trajectory. 

The simulation results show that in both spatial or planar motions the total energy remained constant during the trajectory, i.e., the 
energy change due to gravity is perfectly eliminated. Note that, the springs used in the example are simplified as ideal zero-free-length 
springs. Previous studies [26,27] have proposed the methods to achieve zero-free-length spring by arrangement of cable-pulley. By 
utilizing a spring-cable-pulley system, the spring balance method can be implemented in practical application. In addition, it’s 
important to note that springs spanning over links may potentially introduce interference into the manipulator’s workspace. Theo-
retically, the utilization of more non-adjacent springs leads to a broader span of space they cover. Consequently, there is a possibility of 
interference occurring. In our example, we opted for the configuration with the fewest non-adjacent springs in Table 1, and no 
interference was encountered during the target trajectory. In practical applications, it is crucial for users to carefully assess potential 
interference issues based on the manipulator’s trajectory requirements and dimensions. By conducting a thorough kinematic analysis 
of mechanisms or utilizing simulations, users can select an appropriate spring configuration in Table 1, and adjust the spring 
attachment parameters according to balancing equations to ensure the manipulator operates within the desired workspace without any 
interference from the springs. 

5. Conclusion 

This paper developed a novel spring-gravity balancing method for spatial articulated manipulators. It differs from past studies 
because neither auxiliary links nor any additional devices are required in this approach. The elimination of auxiliary devices avoids the 
introduction of extra inertia and complexity, therefore simplifies the design and implementation process associated with gravity 
balance systems for manipulators in practical applications. 

Furthermore, this paper derived the energy representation in quadratic form, which was previously used for planar manipulators 
only, and extended it to spatial articulated manipulators. And the quadratic form of the planar and the spatial manipulators are unified 
in this paper. Based on this representation, the relationship between energy and link posture was clearly shown. It was also found that 
ground-connected springs can be used to cancel out the gravitational forces. At the same time, they contribute redundant energy that 
must be balanced by non-ground-connected springs. The requirement of spring attachment were derived, i.e., that the springs must be 
attached on the connecting line of the link joints. In addition, a completed discussion to the balance theory of planar and spatial 
articulated manipulator was conducted. It was found that the use of a spring on a planar manipulator is more flexible, as it allows for 

Fig. 14. A four-link spatial manipulator with springs S1,2, S1,4, S2,4 and S3,4.  
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mono-articulated springs (i.e., a spring attached between two adjacent links) to be attached to links with an angular offset. Based on 
the criteria of spring attachment, the rules for spring application to achieve the gravity balance of an arbitrary n-link spatial articulated 
manipulator were proposed, and the acceptable spring configurations for three- and four-link spatial manipulators were derived. At the 
end of the paper, a four-link spatial articulated manipulator was provided as an illustrative example. The simulation results showed 
that by following the method proposed in this paper the gravitational forces can be perfectly balanced in a manipulator’s entire 
workspace. Note that this paper is based on a simplified model that considers only the gravity of links and the static motion of the 
manipulator. Consequently, in this idealized scenario, the theoretical required torque of actuators is zero, as the spring-manipulator 
system’s energy remains constant. However, it is important to acknowledge that in real-world scenarios, other factors come into play, 
such as the weight and friction of actuators, as well as the dynamic behavior of the manipulator. These factors are crucial in practical 
applications and must be taken into account to obtain realistic torque values and to assess the method’s effectiveness in real-world 

Table 3 
Spring parameters to achieve gravity balance for the example manipulator.   

aS(i,j) bS(i,j) kS(i,j)

S1,4 0.060 (m) 0.064 (m) 718.67 (N /m)

S1,2 0.150 (m) 0.240 (m) 294.00 (N /m)

S2,4 0.100 (m) 0.064 (m) 2156.00 (N /m)

S3,4 − 0.200 (m) − 0.100 (m) 2195.20 (N /m)

Fig. 15. Trajectory of the example manipulator.  

Table 4 
Initial posture and rotation of the links.  

Initial posture  

θi ϕi ψ i 

i = 2 0◦ -50◦ -20◦

i = 3 0◦ +20◦ -20◦

i = 4 +90◦ -2◦ -50◦

Rotation of links    
i = 2 +21◦ +60◦ +36◦

i = 3 ±0◦ +96◦ +30◦

i = 4 − 75∘ -30◦ +30◦
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Table 5 
The trajectory of the example manipulator in the x̂0- ẑ0 plane.  

Initial posture  

θi ϕi ψ i 

i = 2 0◦ -40◦ 0◦

i = 3 0◦ -30◦ 0◦

i = 4 0◦ -30◦ 0◦

Rotation of links    
i = 2 

±0◦
+120◦

±0◦

i = 3 
±0◦

+15◦

±0◦

i = 4 
±0◦

+15◦

±0◦

Fig. 16. Energy of the example manipulator during the simulated trajectory.  

Fig. 17. Energy of the example manipulator during the planar trajectory.  
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scenarios. 
Overall, this research provides a novel approach for achieving balance in spatial articulated manipulators, with potential appli-

cations in various fields such as the design of industrial robot arms or exoskeletons. By effectively counteracting the effect of gravity, it 
can reduce the loading on actuators and enhance machine efficiency. This has significant implications for improving the performance 
and overall functionality of manipulator systems in practical applications. This research can contribute to advancements in industrial 
automation, robotics, and other fields where precise and efficient manipulation is required. 
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