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Design of Perfectly Statically
Balanced One-DOF Planar
Linkages With Revolute Joints
Only

A systematic methodology for the design of a statically balanced, single degree-of-
freedom planar linkage is presented. This design methodology is based on the concept of
conservation of potential energy, formulated by the use of complex number notations as
link vectors of the linkage. By incorporating the loop closure equations and the kinematic
constraints, the gravitational potential energy of the system can be formulated as the
Sfunction of the vectors of all ground-adjacent links. The balance of the gravitational
potential energy of the system is then accomplished by the elastic potential energy of a
zero free-length spring on each ground-adjacent link of the linkage. As a result, spring
constants and installation configurations of the ground-attached springs are obtained.
Since the variation in the gravitational potential energy of the linkage at all configura-
tions can be fully compensated by that of the elastic potential energy of the ground-
attached springs, this methodology provides an exact solution for the design of a general
spring balancing mechanism without auxiliary parallel links. Illustrations of the method-
ology are successfully demonstrated by the spring balancing designs of a general
Stephenson-11I type six-bar linkage and a Watt-1 type six-bar linkage with parallel

motion. [DOI: 10.1115/1.3087548]
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1 Introduction

Statically balanced mechanisms are capable of self-sustaining
the system payloads and require little external actuating force to
move objects in a vertical plane motion. Numerous applications of
such mechanisms had been employed in the designs of angle-
poised lamps [1], surgical light apparatus [2-4], weight-lifting
crane [5,6], robot support arm [7,8], etc. Literature showed that
the static balance of a mechanism could be achieved by the coun-
terweight method, the joint friction method, the springs and aux-
iliary parallel links method, etc. Among them, the counterweight
method needs to add additional masses to the system and it may
undermine the strength of links as the payload increases, while the
joint friction method facilitates abrasive force of a joint to coun-
terbalance the gravitational forces of the system and it may cause
the unanticipated failure of the system as the joint friction decays.
On the other hand, the springs and parallel auxiliary links method
was used as an alternative for the design of a statically balanced
mechanism. By tracking the center of mass of a mechanism at
various configurations, many spring balancing mechanisms
(SBMs) are successfully implemented by this method [9-11].
Over the years, the “perfect” spring balances of a single link
[1,12,13], single degree-of-freedom (DOF) planar linkages [14],
and spatial multi-DOF mechanisms [11,15,16] were investigated.
The “perfect equilibration” refers to a system that is in static equi-
librium at its all configurations where the effect of gravity is fully
eliminated from the system of interest [13,17]. Most of the design
methodologies use auxiliary parallel links, forming parallelo-
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grams, along with a number of springs attached between the link-
age and the auxiliary links to compensate for the variation in the
gravitational forces of a linkage. However, the use of auxiliary
parallel links induces extra loadings to the system and complicates
the arrangement of links and springs to avoid motion interfer-
ences. Such a methodology also increases system inertia and, thus,
sacrifices its most advantaged aspect in comparison with the coun-
terweight method. Few studies had been focused on the design of
a perfectly statically balanced mechanism using only linear
springs. Wongratanaphisan and Cole [18] analyzed a four-bar
linkage suspended by linear springs without auxiliary parallel
links. They studied the sensitivity of the potential energy of the
system and showed that a four-bar linkage can be perfectly bal-
anced only when certain symmetric geometry and mass conditions
were satisfied. Shieh et al. [19] proposed a methodology for the
design of a spring balancing general four-bar linkage without aux-
iliary parallel links. However, the static balance of SBMs of
higher links was not investigated.

In this paper, a systematic methodology based on the concept of
conservation of potential energy is proposed for the design of a
statically balanced, one-DOF, all-revolute, planar linkage without
the use of auxiliary parallel links. In the methodology, the gravi-
tational forces of the feasible linkages with any geometry or mass
properties can be perfectly balanced. By equating the variations in
the gravitational potential energy of the linkage and the elastic
potential energy of the springs attached to the system, necessary
and sufficient conditions for the static balance of one-DOF, all-
revolute, planar linkages are obtained, and the spring constant and
installation configuration of each spring are determined. Based on
the design methodology and the use of graph representations, ad-
missible one-DOF SBMs of up to eight links are enumerated.
Designs of the SBMs of a general Stephenson-III type six-bar
linkage and a Watt-I type six-bar linkage with parallel motion are
demonstrated for the achievement of the design methodology.
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Fig. 1 Schematic of independent loops of a one-DOF planar
linkage

2 Design Concept

The general form of the gravitational potential energy of a one-
DOF, all-revolute, planar linkage can be formulated by the link
vectors of the linkage. A link vector is defined as any arbitrary
nonzero vector fixed on the considered link. Because the link
vectors of a planar linkage are constrained by their associated loop
closure equations and the kinematic constraints, the number of the
linearly independent link vectors can be obtained by subtracting
the number of the loop closure equations along with the kinematic
constraints from the number of links. These linearly independent
link vectors are then referred as the base vectors, or the basis [20]
spanning the space of the gravitational potential energy of the
system. Although the selection of the base vectors is not unique,
for simplicity and without loss of generality, vectors representing
the ground and the ground-adjacent links are chosen as the base
vectors. With such an arrangement, the overall gravitational po-
tential energy of the linkage is equivalent to the sum of the gravi-
tational potential energy expressed in terms of ground and the
ground-adjacent links. Since the variation in the gravitational po-
tential energy of any ground-adjacent link can be fully compen-
sated by the elastic potential energy of a zero free-length, exten-
sional, linear spring fitted between ground and the ground-
adjacent link, the static balance of the linkage can be easily
accomplished. Since the number of ground and the ground-
adjacent links has to be equal to that of the base vectors, certain
one-DOF planar linkages are not admissible for the design of the
SBMs with springs alone. Feasible one-DOF SBMs are system-
atically enumerated by assigning different ground location to a
kinematic chain, and the static balance of the linkage is accom-
plished by fitting a ground-attached spring with specified design
parameters to its corresponding link.

3 Gravitational Potential Energy of General Planar
linkages

3.1 Formulation. The gravitational potential energy of a link
of a planar linkage can be represented by the scalar product of the
position vector of the mass center and the vector of the gravita-
tional force of the link. For simplicity and without suffering the
complicated algebraic operations of trigonometric functions, com-
plex number notations are used for vectors in the derivations for
both elastic and gravitational potential energies of the system.
Consider link 7 as any link of a planar linkage, as shown in Fig. 1,
where r; is an arbitrary vector fixed on link i, and points A, B, and
C are fixed on link i. Link vector r,p can be written as

ragl .

"AB=<||:é|em)"i=sz"i (1)
L

where |-| denotes the magnitude of the vector inside the norm, &

is the angle measured from vectors r; to ryg, (|rapl/|ril) is the

elongation ratio of vector r,p with respect to vector r;, and p; is

the constant coefficient transforming vector r; to vector ryp on
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Fig. 2 Path of a distal mass center from the fixed frame

loop k. Since both vectors r; and r, g are fixed on link 7, coefficient
Dir 1s independent of the configuration of the linkage and, hence,
Dix 1s a constant coefficient expressed in exponential form of a
complex number. Note that all vectors hereafter are represented in
boldface characters, while constant coefficients are not.

Since the link vector on link i and loop k can be represented by
pidi» link vectors rpe and r¢y can be represented by p;sr; and
pioli, respectively. Note that if link 7 is not on loop &, p;, is equal
to zero, e.g., p;; in Fig. 1 is zero. Also note that, throughout the
paper, all angles are measured counterclockwise, and the direc-
tions of link vectors pyr;, pisri, Pudi» €tc., are in accordance with
the direction of their corresponding loop, as illustrated in Fig. 1
unless specified otherwise.

Referring to the general planar linkage in Fig. 2, M, is the mass
center of link i and R; is the position vector of mass center M;
from point O of the reference coordinate system. The coordinate
system of the complex plane is placed with its positive real-axis
pointing downward and imaginary-axis rightward. Based on Eq.
(1), position vector R; in Fig. 2 can be expressed as

Ri=po,ri+ (E Epjkrj) +S8i=por tpsirit E Epjkrj
i i

J J
2)

where j and k are the labels of the link and the loop, respectively,
on the path from point O to the mass center of link i, s; is the
position vector of mass center M; from the preconnected joint of
link i, and py; is the constant transformation coefficient of vector
r; to vector s;.

Hence, the gravitational potential energy of link i can be ex-
pressed as

(e))i=—mg -R;=g- (— mppo,r _mips,iri_miE Epjkrj)
ik

3)

where g represents the vector of the gravitational acceleration,
pointing downward. The negative sign in Eq. (3) implies that the
maximum gravitational energy of link i is at the highest position
of its mass center.

Note that, for a closed-loop, planar linkage, the path selected
from the reference coordinate to the mass center M, is not unique,
and thus the representation of Eq. (3) is also not unique. By col-
lecting all constant coefficients for each link vector r;, the overall
gravitational potential energy of an n-link planar linkage becomes

e=2 (e)i=g- | X e 4)
i i=1

where c;, expressed in exponential form of complex number, is a
constant coefficient constituted by m;, pj, and py ;.
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Equation (4) indicates that the gravitational potential energy of
an n-link planar linkage can be expressed by the inner product of
vector g and a vector formed by the linear combination of
ry,ry,...,r,. However, since the n-link vectors of a closed-loop
planar linkage are not mutually linearly independent, ¢; may be
different, and a unique expression of c; is not available. Hence, the
number of the linearly independent link vectors used in the for-
mulation of the gravitational potential energy in Eq. (4) has to be
identified.

3.2 Kinematic Constraints of a Linkage System. Kinematic
constraints of a planar linkage confine the relative motions among
links. In general, a linear kinematic constraint equation can be
expressed as

E =0 (5)
k=1

where ¢, is the constant coefficient and ¢, can be zero, a real or a
complex number.
Assume ¢;=0 for k#1i,j, Eq. (5) is reduced to

(6a)

or

(60)

where g=-(g;/q;), @ is the angle measured from vectors r; to r;,
and (|r;|/ \rj|) is the elongation ratio of the magnitudes of vector r;
with respect to r;.

The kinematic constraint depicted in Eq. (6) suggests that links
i and j have the same angular velocity, i.e., links 7 and j are
always kept in a same relative angle of orientation. If links i and
Jj are adjacent, they are considered rigidly connected since there is
no relative motion between the two links. However, if links ¢ and
J are not adjacent, the two links are in parallel motion and Eq. (6)
is referred to the case where the two links are subjected to a
kinematic constraint of parallel motion. A parallel kinematic con-
straint can be resulted from the special arrangement of the link
dimensions, e.g., the lengths of the parallel links of a parallelo-
gram must be equal.

On the other hand, for a multiloop, planar linkage, each inde-
pendent loop represents a linear kinematic constraint to the mo-
tion of the links of the planar linkage. The loop closure equation
of loop k can be represented as

> pari=0 (7
i=1

For a one-DOF, n-link, planar linkage, the number of the indepen-
dent loops is (n/2—1) [21]. Writing Eq. (7) for each independent
loop k yields a total number of (n/2—1) linearly independent
vector equations with n-link vectors. The number of linearly in-
dependent link vectors of the linkage is then obtained by subtract-
ing the number of loop closure equations from that of link vectors
as

n n
#{B}=n (2 1) 2+1 (8)
where B is referred to the set of linearly independent link vectors
or the base vectors of the linkage, and #{B} represents the number
of the base vectors.

A set of base vectors, or a basis, is a spanning set of a vector
space, where all vectors in that space can be represented by the
linear combination of the base vectors in the set. For example, if
B={v,,v,,...,v,} is a basis of vector space V, any vector v € V
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can be expressed uniquely by the linear combination of the basis
B as v=Bjv+Byv,+ "+ B,v,, where scalars SB,,0,,...,05, are
the coordinates of vector space V with respect to the basis B.

Solving the (n/2-1) loop closure equations simultaneously,
any link vector r; of the linkage can be expressed by the linear
combination of the base vectors as

rFEC/'J"k, r,eB )
&

where ry represents a base vector and ¢;, is the constant coefficient
obtained from the algebraic manipulations of the (n/2—1) loop
closure equations of Eq. (7).

Substituting Eq. (9) into Eq. (4), the gravitational potential en-
ergy of a one-DOF, planar linkage can be written in terms of the
(n/2+1) base vectors as

=g (E cfri) =g (E c’k’rk), reeB (10)
i=1 k

Although any (n/2+1) of the n independent vectors of the sys-
tem can be chosen as the base vectors, practically, it is desirable to
select ground vector ry to be one of the base vectors. Since ground
vector is configuration independent, vector r; is referred as the
invariant base vector, while the remaining (n/2) base vectors are
referred as the variant base vectors. Hence, Eq. (10) can be further
rewritten as

e,=g- (E chk> +const, rpeB and ry#r;, (11)
k

where ry, stands for a variant base vector and the constant term is

g-(Cry).

Furthermore, since the rotation axes of the ground-adjacent
links are fixed on ground, if the (n/2) variant base vectors repre-
sent the link vectors of the ground-adjacent links, the overall
gravitational potential energy of a one-DOF planar linkage in Eq.
(11) is equivalent to the sum of the gravitational potential energies
of the (n/2) ground-adjacent links. Note that, in the expression of
the gravitational potential energy in Eq. (11), the multiplication of
the mass and the mass center transformation coefficient for each
ground-adjacent link, say, link , are replaced by c}. Equation (11)
further implies that the number of the variant base vectors has to
be equal to or less than the number of the ground-adjacent links if
the gravitational potential energy is to be represented by all base
vectors. It is well known that the maximum number of links con-
nected to any link in a one-DOF planar linkage is (n/2). Hence, if
the number of the variant base vectors is (n/2), the number of the
ground-adjacent links of a linkage has to be (n/2); otherwise the
gravitational potential energy cannot be represented by the vectors
of the ground-adjacent links alone. However, if the number of the
variant base vectors is (n/2-1), the number of the ground-
adjacent links of a linkage can be (n/2—1) or (n/2). For example,
if a coupler link of a one-DOF, planar linkage is in translational
motion, the relative orientation of the link with respect to the
ground is always constant, and the vector representing the trans-
lational link becomes linearly dependent with respect to that of
ground link. Hence, the number of the variant base vectors used in
the formulation of the gravitational potential energy can be re-
duced by 1. As a result, the required minimum number of ground-
adjacent links is (n/2—1). In general, the required minimum num-
ber of ground-adjacent links for an n-link, one-DOF planar
linkage can be obtained by subtracting the number of the addi-
tional kinematic constraints from (n/2).

Moreover, as indicated previously, the constant coefficient ¢; in
Eq. (4) may differ if a distinct path is chosen. However, once the
base vectors are selected, the constant coefficient ¢ in Eq. (10) is
uniquely determined regardless of the path selection since the
base vectors are mutually linearly independent. The constant co-
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Fig. 3 Installation of a ground-attached spring

efficient ¢} is a function of ¢; and ¢;, where ¢; contains the mass
properties of the linkage as indicated in Egs. (3) and (4), while, in
Eq. (7), ¢, contains only the geometric information of the linkage
from the loop closure equations and other kinematic constraints.
Note that, through manipulating the mass center locations and the
masses of links, it is possible to adjust one or more of the coeffi-
cients ¢} to be zero. As a result, the number of linearly indepen-
dent base vectors for the formulation of the gravitational potential
energy can be further reduced. Manipulation on masses and loca-
tions of mass centers can be easily achieved by the counterweight
method or using extremely lightweight links. Design of a SBM
utilizing a hybrid method of both counterweights and springs
method is also possible. Such a hybrid method uses less number
of springs and, thus, reduces the possibility of sabotage of the
integrity of the design due to the possible spring relaxation with
time.

4 Elastic
Springs

Potential Energy of Ground-Attached

If the elastic potential energy of the springs fitted in a one-DOF
planar linkage can be represented by the same base vectors used
in the formulation of the gravitational potential energy in Eq. (11),
static balance of the system becomes possible. Refer to the
ground-adjacent link fitted with a spring, as shown in Fig. 3,
where link 1 represents ground, link j is the inverted pendulum
connected to ground via a fixed pivot, and ¢; is the orientation
angle of vector r; measured with respect to the positive real-axis.
By fitting a zero free-length, extensional, linear spring on link j,
the elastic potential energy of the ground-adjacent link can be
obtained as

(e));= 3K = (12)

1
2 Kx; - x;
where

Xj=bj—llj (13)

and K; is the spring constant and a; and b; are the position vectors
of the attachment ends of the spring at pivots A and B, respec-
tively.

Note that a zero free-length spring can be made up with a
pretensioned, nonzero free-length spring and possibly with cables
and pulleys [14,15]. The magnitude of preload is arranged to be
equal to the product of the spring constant and the free length of
the spring at the configuration where the two ends of the zero
free-length spring coincide with each other. Substituting Eq. (13)
into Eq. (12) yields

(e));j=~ (14)
where the constant part of Eq. (14) is equal to K(|a;{*+b;{%)/2.
Since vector b; is fixed on link j and equals to b;

_(|b |/|r|eﬂj rj, and a; is a constant vector and equals to a;
=(la |/|g|e"”)g, Eq. (14) can be further expressed as

Kb; - a; + const
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(e);=-K; ( || j| tﬁ,,«) <|| ’|| e‘“fg) + const (15)
Tj

where |a;| and |b;| are the magnitudes of the position vectors of the
two end points for the ground-attached spring, and «; and B; are
the angles measured from vector g to a; and from vector rjto b,
respectively.

Noted that, since both (|a;|/|gle’) and (|b;|/|r;le’) are con-
stant coefficients and based on the complex number operation, Eq.
(15) can be rewritten as

b;
(e);= <|| || )(| ’|| ""‘)g rj + const
g
=g- [(_ ¢ |r||g]| e"(“){/’f@r‘))rj} + const
i

Equation (16) indicates that the elastic potential energy (e;); of a
ground-attached spring varies with the rotation of the link vector
r;. By fitting a ground-attached spring to each ground-adjacent
link, the overall potential energy of the system can be obtained,
based on Egs. (11) and (16), as

’(“"./J’ﬁi))rj} + const

b;
etotal=€g+2(es)j=g.|:2< K|a|| ‘
J
(17)

e o

; T lrllel

where j is the label of a ground-adjacent link to which a spring is
attached.
In order for the overall potential energy of the linkage to be
invariant at any configuration, the constant coefficient of (c
—K(|aj{[b;|/|g]lr|)e" =) in Eq. (17) has to be zero, i.e.,

T
"Irjlle]

For the two complex numbers ¢} and K;(|a;|[;|/ |g||r “)e =B in

Eq. (18) to be equal, both their magnltudes and arguments have to

be equal. Hence,

(18)

_lejllelirl
' (19)
" ajllb)
and
arg(c)) =—a;+ ; (20)

Note that, referring to the ground-adjacent link in Fig. 3 and
based on Eq. (20), the installing angle of the spring can be repre-
sented by \;=a;—B;—6;=-arg(c})~0;. This indicates that the
spring installation angle A; varies as the ground-adjacent link ro-
tates and, thus, the variation in the gravitational potential energy
of the system at any configuration can be fully compensated by
that of the elastic potential energy of the spring if the conditions in
Eqgs. (19) and (20) are satisfied. Also note that, in addition to the
geometry and mass properties of the linkage, the spring constant
K;in Eqs. (19) and (20) depends on the magnitudes of both spring
installation vectors a; and b;. In general, the value of spring con-
stant K; can be arbitrarily adjusted simply by tuning the attached
ends of the spring to other corresponding position. For example, if
a stiffer spring is desired, smaller magnitudes of vectors a; and b;
have to be used. On the contrary, if a softer spring is used, larger
magnitudes of vectors a; and b; are required. Therefore, if the
gravitational potential energy of the linkage can be formulated by
the expression of all ground-adjacent links, the entire gravitational
potential energy of the system is fully decoupled and can be bal-
anced by the elastic potential energy of the spring fitted on each of
the ground-attached links. Since no auxiliary parallel links are
used for the static balance of a linkage, such a design is consid-
ered efficient and less complex.
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Table 1 Graph representations of one-DOF general SBMs up
to eight links (n is the number of links)

n=4 =6

ORRe

@@@
@E@

5 Feasible Linkage and Its Associated Spring Installa-
tion Configuration

A4

A8a

A8e

5.1 General Spring Balancing Linkages. A one-DOF,
n-link, planar linkage with (n/2) ground-adjacent links can be
perfectly balanced by attaching a spring to each of the ground-
adjacent links. By the use of the graph representation [22], ten
feasible springs balancing four-, six-, and eight-link graphs are
obtained, as illustrated in Table 1, where links are represented by
vertices, joints by edges, ground link by double vertices, and
springs by double slash lines. A double slash line represents that a
spring is fitted between the ground vertex and its adjacent vertex.
The linkages in Table 1 are referred to the SBMs of type A where
the numbers of the ground-adjacent links and the variant base
vectors are both equal to (n/2). Note that the number and the
lowercase alphabetic letters represent the number of links and
distinct graph structures, respectively. For instance, graphs “A6a”
and "A6b” are both six-link, type-A SBMs with different struc-
tures.

5.2 SBMs With Degenerated Number of Springs. Should
less ground-attached springs are desired for the static balance of a
one-DOF, n-link, planar linkage with (n/2) ground-adjacent links,
the number of the variant base vectors must be less than (n/2).
This can be achieved by imposing additional kinematic constraints
into the system. Provided one parallel constraint is given as that of
Eq. (6). Combining the kinematic constraint of Eq. (6) with the
loop closure equations of Eq. (7) yields a total number of (n/2)
linearly independent equations with n vectors. The number of vec-
tors in the basis becomes

s (3]

Comparing Eq. (21) with Eq. (8), the number of base vectors in
Eq. (21) is 1 less than that of Eq. (8), and the required number of
the ground-attached springs can be reduced by 1. In the search of
the admissible SBMs with parallel motion constraints, three rules
are employed: First, any two adjacent links cannot be assigned as
parallel motion pairs; otherwise they are considered rigidly con-
nected and result in the degeneration of numbers of links, joints,
and the degrees of freedom of the linkage; second, all kinematic
isomorphic structures due to the parallel constraints are excluded;
and third, since the base vectors must be linearly independent of

(21)

Journal of Mechanical Design

Table 2 Graph representations of one-DOF, spring balancing
parallel mechanisms with (n/2) ground-adjacent links and
(n/2-1) springs up to six links (n is the number of links)

n=4 n=6
ORG
B4 B6a-1 B6a-2  B6a-3
GRORele
B6a-4 B6a-5 B6a-6  B6b-1 B6b-2
olelale
B6b-3 B6b-4 B6b-5 B6b-6 B6b-7
<1<
B6b-8 B6b-9 B6b-10 B6b-11

each other, only one of the parallel motion vertices can be fitted
with one ground-attached spring. As a result, the graphs of the
admissible SBMs with parallel motion constraints are obtained
and enumerated in Table 2, where the solid vertices represent the
pair of links in parallel motion. The linkages with degenerated
number of springs in Table 2 are referred to the SBMs of type B
where the number of the ground-adjacent links is (n/2) and the
number of the variant base vectors is (n/2—1). In Table 2, the
graphs are labeled in the same way as those in Table 1, except for
the distinction of spring configurations, e.g., “B6a-1" and "B6a-2”
have the same structures, but with different spring configurations.

There are other SBMs of type B whose numbers of the ground-
adjacent links and the variant base vectors are both (n/2—1). For
a one-DOF, n-link, planar linkage with (n/2-1) ground-adjacent
links, the admissible graphs can be obtained by kinematic inver-
sion of the graphs in Table 2 and are illustrated in Table 3. Note
that, in Table 2, the degrees of the ground vertices of the graphs
are all (n/2), while those in Table 3 are equal to (n/2—1). Clearly,
for the six-link linkages, only the Watt-I and Stephenson-I and -II
mechanisms appear in Table 3. They correspond to graph numbers
B6c, B6d, and Bo6e, respectively. Lastly, since the degrees of all
vertices in a four-bar linkage equal to 2, Table 3 contains graphs
of six-link linkages only.

In Tables 1-3, the SBMs are categorized into two types. Type-A
linkages are referred to general SBMs containing (n/2) ground-
adjacent links with (n/2) ground-attached springs fitted between
ground and each of the ground-adjacent links. Type-B linkages are
referred to SBMs with degenerated number of springs. Note that,
for type-B linkage, the additional kinematic constraints have to be
linearly independent of the loop closure equations.

6 Examples

6.1 Example I: Stephenson-III Type Spring Balancing
Linkage. Graphs “A6a” and “A6b” in Table 1 are the Watt-II and
the Stephenson-III type SBMs, respectively. Referring to the gen-
eral Stephenson-III type linkage in Fig. 4, m; represents the mass
center of link i, s; is the position vector of mass center m; from its
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Table 3 Graph representations of one-DOF, n-link, spring bal-
ancing parallel mechanisms with (n/2-1) ground-adjacent
links up to six links (n is the number of links)

n=6
DRORNIOI0
Bé6c-1 B6c-2 B6c-3 Bo6c-4 Bb6e-5
A AT
B6d-1 B6d-2 B6d-3 B6e-1  Bb6e-2
<1<
B6e-3 Bo6e-4 Bo6e-5

preconnected joint on link i, a; and b; are the position vectors of
the fixed end and the link end of the spring attachment points on
ground-adjacent link j, respectively, and K; is the spring constant
of the ground-attached spring on link j. Although link vector r;
can be any arbitrary vector fixed on link i, for simplicity, r; is
defined as a vector on link i between joints, as illustrated in Fig. 4.
For an arbitrarily selected path from the referenced origin O, the
position vector of the mass center for each link is

Ry=(po+ Dry+pors (22a)
Ry=(po1+ Dri+ry+pgars (22b)
Ry=(po 1+ Dri+ry+r3+p,ary (22¢)
Rs=(po+ Dry+ry+ (1 +p3)rs+pgsrs (22d)
Rs=(poi+ Dri+ry+(L+pprs+rs+pggre  (22¢)

where p;; is the constant coefficient transforming vector r; to
vector s;, po 17y is the position vector from O to the fixed pivot of
link 4, and complex numbers ps3, and p;, are the constant trans-
formation coefficients for the ternary links 1 and 3, respectively.

According to Egs. (3) and (4), the overall gravitational potential
energy is the sum of the gravitational potential energy of each

Fig. 4 Stephenson-lll type linkage with three ground-attached
springs
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link. By substituting Eq. (22) into Eq. (3), the expressions for the
gravitational potential energy of the system are expressed in terms
of six-link vectors as Eq. (4) as

6
€g=g' <E Ciri)
i=1

(23)
where
cr=(1 +p0’1)(—m2—m3—m4—m5—m6) (24a)
Cy == MyPy o = M3 = Ny = M5 = Ng (24b)
cy=—my+ (1 + p3)(=ms—mg) - mspg 3 (24¢)
Ca=—MyPsy4 (24d)
Cs==1Mg=MsP; 5 (24e)
Co=—MePs6 (249

The two linearly independent loop closure equations of the
Stephenson-III type linkage are given as

ri+ry+ry+r,;=0 (25a)

and
(25b)

Choosing the vectors of ground and the ground-adjacent links as
the base vectors, vectors r3 and r5 can be expressed in terms of the
base vectors rq, r,, 1y, and r¢. By collecting the variant base vec-
tors terms, the gravitational potential energy in Eq. (23) can be
rewritten as

P — T4+ par3+rs+re=0

e,=g" ( 2 c;.’rj) + const (26)
j=2.4.6
where
Chy==Mmy+Mmsp3y = MyPsH+Mmape3—msppps  (27a)

"
Cy=my+ms+mspzy +M3pg3—MyPg g — MsPs s — MsP3pPy s
(27b)

and
Co=Mspy s+ Mg — MePy (27¢)

Note that, since ry, r,, r4, and rg are chosen as the base vectors,
the constant coefficients ¢, c}j, and c¢ are uniquely determined.
Since the term g - (c{r;) in Eq. (26) is constant and irrelevant to the
spring design conditions, it is not expressed explicitly. By fitting a
ground-attached springs between ground and links 2, 4, and 6,
respectively, as shown in Fig. 4, the balance of the total potential
energy of the system can be accomplished, and the spring con-
stants and the spring attachment points for each of the ground-
attached springs can be determined based on Egs. (19) and (20) as

_ l<fllgllr

= , J=2,4,6
! |aj||bj|

(28a)

and
(28b)

The spring constants K,, K4, and K¢ and the spring design param-
eters |ay|, |ayl, lag|, b2, |Bal, b6, @z, a4, g, Bos By, and B, can be
selected according to Eq. (28). Consider a linkage with given
geometry and mass properties provided in Table 4 where the ini-
tial configuration of the linkage represented by vectors r; and s;
for j=1,2,...,6 is also included. With predetermined values of
spring constants K,=1000 N/m, K;=3000 N/m, and Kj
=5000 N/m, the spring attachment points of the three springs are
readily obtained via Egs. (19) and (20) and listed in Table 5.

arg(c}') =—a;+B;, j=246

s ] s s s
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Table 4 Geometry and mass properties of the Stephenson-lll type linkage

Link i Geometry properties (m) Mass properties (Kg, m)
1 r=0.9i; P1=0.114-0.125i;
2 r,=—0.416+0.422i; m,=1.396; §,=—0.208+0.2117;
3 r;=0.334-0.893i; Pp3»=0.108-0.1871; m3=5.065; §3=0.167-0.6081;
4 r;=0.082-0.450i; my=0.821; 54=0.041-0.225i;
5 rs=0.200+0.346i; ms=20.946; §5=—0.046+1.398i;
6 re=—0.100-0.534; me=1.738; §4=—0.050—0.267i;

Similarly, the design of a spring balancing Watt-1I linkage can be
implemented using this methodology applicable to the design of
the Stephenson-III type linkage.

6.2 Example II: Spring Balancing Parallelogram Four-
Bar Linkage. The four-bar parallelogram of graph B4 in Table 2
is the simplest structure of a parallel linkage. As shown in Fig. 5,
due to its special geometry, links 2 and 4 are always parallel to
each other, and the kinematic relation between links 2 and 4 is

(29)

The coupler link 3 is in circular translation and its orientation is
parallel with respect to ground. According to Eq. (11), the gravi-
tational potential energy of the parallelogram four-bar linkage is

ry=—r

e,=g- ( 2 c}’rj) + const (30)
j=2.4
where
Cy=—MyPyo— My +M3P, 3 (31a)
and
Cy=—MyPy g+ My + 3P, 3 (31b)

Equation (29) is considered as the additional kinematic constraint
to a general four-bar linkage. Substituting Eq. (29) into Eq. (30)
yields

e, =g - (cy'ry) + const (32)
where
C/z,/ == MpPgo— M3 =My +MyPgy (33)
Table 5 Spring design parameters
Spring on Stiffness
link j (N/m) Attachment points (m)
2 1000 a,=-0.173-0.040i; b,=-0.334+0.337i;
4 3000 a;=-0.202+0.144i, b,=0.068-0.340i;
6 5000 ag=0.155-0.094i; bs=-0.078-0.428i;
Im
Re
Di=r,
AB=r,
BC-r,
D —
CD=r,
AM, =p,,r,
3 % = Pssts
CM, =p,r,

Fig. 5 Spring balancing parallelogram four-bar linkages

Journal of Mechanical Design

Equation (32) shows that the gravitational potential energy of
the parallelogram four-bar linkage can be described by one variant
base vector r,; thus, the system requires only one ground-attached
spring for the static balance of the system. The spring design
conditions are obtained by replacing the constant coefficient c}'
with ¢ in Egs. (19) and (20). In comparison with a general four-
bar linkage, the number of springs required in a statically bal-
anced parallelogram four-bar linkage is degenerated by 1. It is to
be noted that, for a parallelogram four-bar linkage, the spring can
be fitted between ground and link 2 or between links 4 (or 2) and
3. Because of the parallel motion, the coupler link, link 3, pro-
vides a “pseudo” ground at the distal end. This is the main reason
for many designers to adopt parallel auxiliary links in the spring
balancing linkages.

6.3 Example III: Spring Balancing Watt-I Parallel Motion
Generator. Another example of a one-DOF linkage with parallel
motion is a Watt-I parallel motion generator [23]. Referring to
graph B6c-4 in Table 3, the dimensions of the six-link, Watt-I
linkage are constructed, as shown in Fig. 6, where link 5 and
ground link are the parallel pairs. Link 5 always moves in parallel
with respect to ground and undergoes curvilinear translation.
Again, as depicted in Eq. (4), the gravitational potential energy of
the Watt-I six-link linkage can be expressed in terms of six link
vectors, ry,r,, ...,rs and the loop closure equations of the link-
age are

rl+r2+r3+r4=0 (34a)
and
(34b)

From Eq. (8), the parallelism between link 5 and ground is ex-
pressed as

Pada+pars+rs+rg=0

35)

rs=qr;

where

Di=r,

y 1
BC=r, M, l—ﬂm
CG= Pl 717;= Pl )

@=r4 TVEP‘_;’; Re
EF:PJ:') W.;:I’u’:

F_E=ra G‘_ws‘=p‘.5r5

ﬁ="5 m;=p\.orn

Fig. 6 Watt-l parallel motion generator with two springs
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Sl

(36)
|"1

and 6), is the relative orientation angle of link 5 with respect to
ground.

Since the kinematic constraints of the loop closure equations of
Eq. (34) and the parallel motion of Eq. (35) are linearly indepen-
dent in general, the two vectors, r3 and rg, can be obtained as
linear combination of the base vectors ry, r,, and r, as

F3=—F —Fy—Ty (37a)
and

T6=(=q+p3)r +pary+ (P32 = pa)rs (37b)
Substituting Egs. (35) and (37) into Eq. (4), the gravitational po-
tential energy of the six-link Watt-I linkage is obtained as

=g < 2 c}"rj> + const (38)
j=2.4
where
Crzn ==y —MyP; o+ M3 3+ Msp3y + MeP3y — MeP3Py 6
(39a)

and

n
Cq =My +Mms+ Mg+ m3pg3+Mspsy + MeP3y = MyPs g — MeP32Ds 6

+ MePaoPss (39b)

Fitting a ground-attached spring to each of ground-adjacent links
2 and 4, respectively, and followed by the cancellation of the
variations in the gravitational potential energy and the elastic po-
tential energy of the system, the design parameters of the spring
can be obtained via Eq. (18). This example demonstrates that the
design of a statically balanced one-DOF, n-link, planar parallel
linkage with (n/2-1) ground-adjacent link can be accomplished
by using degenerated number of springs.

The motions of the Stephenson-III type six-bar linkage of Fig.
4, the parallelogram four-bar linkage of Fig. 5, and the Watt-I type
six-bar linkage of Fig. 6 are simulated by ADAMS, and the gravi-
tational, elastic, and total potential energies versus crank angle for
an entire cycle are plotted in Figs. 7(a)-7(c), respectively. Figure
7 shows that the variations in the gravitational potential energies
of the three systems can be perfectly compensated by that of the
elastic potential energies of the ground-attached springs.

In general, a Watt-I linkage with only two ground-adjacent links
cannot be statically balanced with ground-attached springs alone.
However, due to the inclusion of the kinematic constraint of par-
allel motion, the number of the base vectors required in the for-
mulation of the gravitational potential energy of the Watt-I linkage
is degenerated by 1. Hence, only two ground-attached springs are
needed. The concept of degeneration of the linearly independent
vectors in the formulation of the gravitational potential energy of
the planar linkage can be extended to linkages of higher links.
With the aid of graph representations, more feasible higher-link
SBMs can be enumerated systematically. In practice, static bal-
ance of a one-DOF, n-link planar linkage with less than (n/2)
ground-adjacent links can be obtained, as long as the kinematic
constraint equations are linearly independent of the existed loop
closure equations.

7 Conclusion

A systematic methodology for the design of a full-cycle, stati-
cally balanced, one-DOF planar linkage with revolute joints only
is presented. In the methodology, no auxiliary parallel links are
required. Design of a statically balanced, one-DOF, n-link, planar
linkage with (n/2) ground-adjacent links can be accomplished by
fitting a ground-attached spring to each of the ground-adjacent
links. Admissible graphs of one-DOF planar linkages of up to
eight links are enumerated. It is also shown that the SBMs with
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Fig. 7 Potential energy curves of (a) the Stephenson-lll link-
age, (b) the parallelogram linkage, and (c) the Watt-1 parallel
motion generator

degenerated number of the springs can be obtained, provided that
the prescribed kinematic constraints of the linkage are linearly
independent of the inherited loop closure equations. This method-
ology is successfully demonstrated by the designs of the static
balances of a general Stephenson-III type six-bar linkage with
(n/2) ground-adjacent links and a Watt-I type six-bar linkage of
parallel motion with (n/2-1) ground-adjacent links. Results are
simulated and justified by the software ADAMS.
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