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Design of Perfectly Statically
Balanced One-DOF Planar
Linkages With Revolute Joints
Only
A systematic methodology for the design of a statically balanced, single degree-of-
freedom planar linkage is presented. This design methodology is based on the concept of
conservation of potential energy, formulated by the use of complex number notations as
link vectors of the linkage. By incorporating the loop closure equations and the kinematic
constraints, the gravitational potential energy of the system can be formulated as the
function of the vectors of all ground-adjacent links. The balance of the gravitational
potential energy of the system is then accomplished by the elastic potential energy of a
zero free-length spring on each ground-adjacent link of the linkage. As a result, spring
constants and installation configurations of the ground-attached springs are obtained.
Since the variation in the gravitational potential energy of the linkage at all configura-
tions can be fully compensated by that of the elastic potential energy of the ground-
attached springs, this methodology provides an exact solution for the design of a general
spring balancing mechanism without auxiliary parallel links. Illustrations of the method-
ology are successfully demonstrated by the spring balancing designs of a general
Stephenson-III type six-bar linkage and a Watt-I type six-bar linkage with parallel
motion. �DOI: 10.1115/1.3087548�
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Introduction
Statically balanced mechanisms are capable of self-sustaining

he system payloads and require little external actuating force to
ove objects in a vertical plane motion. Numerous applications of

uch mechanisms had been employed in the designs of angle-
oised lamps �1�, surgical light apparatus �2–4�, weight-lifting
rane �5,6�, robot support arm �7,8�, etc. Literature showed that
he static balance of a mechanism could be achieved by the coun-
erweight method, the joint friction method, the springs and aux-
liary parallel links method, etc. Among them, the counterweight

ethod needs to add additional masses to the system and it may
ndermine the strength of links as the payload increases, while the
oint friction method facilitates abrasive force of a joint to coun-
erbalance the gravitational forces of the system and it may cause
he unanticipated failure of the system as the joint friction decays.
n the other hand, the springs and parallel auxiliary links method
as used as an alternative for the design of a statically balanced
echanism. By tracking the center of mass of a mechanism at

arious configurations, many spring balancing mechanisms
SBMs� are successfully implemented by this method �9–11�.
ver the years, the “perfect” spring balances of a single link

1,12,13�, single degree-of-freedom �DOF� planar linkages �14�,
nd spatial multi-DOF mechanisms �11,15,16� were investigated.
he “perfect equilibration” refers to a system that is in static equi-

ibrium at its all configurations where the effect of gravity is fully
liminated from the system of interest �13,17�. Most of the design
ethodologies use auxiliary parallel links, forming parallelo-
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grams, along with a number of springs attached between the link-
age and the auxiliary links to compensate for the variation in the
gravitational forces of a linkage. However, the use of auxiliary
parallel links induces extra loadings to the system and complicates
the arrangement of links and springs to avoid motion interfer-
ences. Such a methodology also increases system inertia and, thus,
sacrifices its most advantaged aspect in comparison with the coun-
terweight method. Few studies had been focused on the design of
a perfectly statically balanced mechanism using only linear
springs. Wongratanaphisan and Cole �18� analyzed a four-bar
linkage suspended by linear springs without auxiliary parallel
links. They studied the sensitivity of the potential energy of the
system and showed that a four-bar linkage can be perfectly bal-
anced only when certain symmetric geometry and mass conditions
were satisfied. Shieh et al. �19� proposed a methodology for the
design of a spring balancing general four-bar linkage without aux-
iliary parallel links. However, the static balance of SBMs of
higher links was not investigated.

In this paper, a systematic methodology based on the concept of
conservation of potential energy is proposed for the design of a
statically balanced, one-DOF, all-revolute, planar linkage without
the use of auxiliary parallel links. In the methodology, the gravi-
tational forces of the feasible linkages with any geometry or mass
properties can be perfectly balanced. By equating the variations in
the gravitational potential energy of the linkage and the elastic
potential energy of the springs attached to the system, necessary
and sufficient conditions for the static balance of one-DOF, all-
revolute, planar linkages are obtained, and the spring constant and
installation configuration of each spring are determined. Based on
the design methodology and the use of graph representations, ad-
missible one-DOF SBMs of up to eight links are enumerated.
Designs of the SBMs of a general Stephenson-III type six-bar
linkage and a Watt-I type six-bar linkage with parallel motion are

demonstrated for the achievement of the design methodology.
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Design Concept
The general form of the gravitational potential energy of a one-

OF, all-revolute, planar linkage can be formulated by the link
ectors of the linkage. A link vector is defined as any arbitrary
onzero vector fixed on the considered link. Because the link
ectors of a planar linkage are constrained by their associated loop
losure equations and the kinematic constraints, the number of the
inearly independent link vectors can be obtained by subtracting
he number of the loop closure equations along with the kinematic
onstraints from the number of links. These linearly independent
ink vectors are then referred as the base vectors, or the basis �20�
panning the space of the gravitational potential energy of the
ystem. Although the selection of the base vectors is not unique,
or simplicity and without loss of generality, vectors representing
he ground and the ground-adjacent links are chosen as the base
ectors. With such an arrangement, the overall gravitational po-
ential energy of the linkage is equivalent to the sum of the gravi-
ational potential energy expressed in terms of ground and the
round-adjacent links. Since the variation in the gravitational po-
ential energy of any ground-adjacent link can be fully compen-
ated by the elastic potential energy of a zero free-length, exten-
ional, linear spring fitted between ground and the ground-
djacent link, the static balance of the linkage can be easily
ccomplished. Since the number of ground and the ground-
djacent links has to be equal to that of the base vectors, certain
ne-DOF planar linkages are not admissible for the design of the
BMs with springs alone. Feasible one-DOF SBMs are system-
tically enumerated by assigning different ground location to a
inematic chain, and the static balance of the linkage is accom-
lished by fitting a ground-attached spring with specified design
arameters to its corresponding link.

Gravitational Potential Energy of General Planar
inkages

3.1 Formulation. The gravitational potential energy of a link
f a planar linkage can be represented by the scalar product of the
osition vector of the mass center and the vector of the gravita-
ional force of the link. For simplicity and without suffering the
omplicated algebraic operations of trigonometric functions, com-
lex number notations are used for vectors in the derivations for
oth elastic and gravitational potential energies of the system.
onsider link i as any link of a planar linkage, as shown in Fig. 1,
here ri is an arbitrary vector fixed on link i, and points A, B, and
are fixed on link i. Link vector rAB can be written as

rAB = � �rAB�
�ri�

ei��ri = pikri �1�

here � · � denotes the magnitude of the vector inside the norm, �
s the angle measured from vectors ri to rAB, ��rAB� / �ri�� is the
longation ratio of vector rAB with respect to vector ri, and pik is

ig. 1 Schematic of independent loops of a one-DOF planar
inkage
he constant coefficient transforming vector ri to vector rAB on
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loop k. Since both vectors ri and rAB are fixed on link i, coefficient
pik is independent of the configuration of the linkage and, hence,
pik is a constant coefficient expressed in exponential form of a
complex number. Note that all vectors hereafter are represented in
boldface characters, while constant coefficients are not.

Since the link vector on link i and loop k can be represented by
pikri, link vectors rBC and rCA can be represented by pi3ri and
pi2ri, respectively. Note that if link i is not on loop k, pik is equal
to zero, e.g., pi1 in Fig. 1 is zero. Also note that, throughout the
paper, all angles are measured counterclockwise, and the direc-
tions of link vectors pi2ri, pi3ri, pikri, etc., are in accordance with
the direction of their corresponding loop, as illustrated in Fig. 1
unless specified otherwise.

Referring to the general planar linkage in Fig. 2, Mi is the mass
center of link i and Ri is the position vector of mass center Mi
from point O of the reference coordinate system. The coordinate
system of the complex plane is placed with its positive real-axis
pointing downward and imaginary-axis rightward. Based on Eq.
�1�, position vector Ri in Fig. 2 can be expressed as

Ri = pO,1r1 + ��
j

�
k

pjkrj� + si = pO,1r1 + ps,iri + �
j

�
k

pjkrj

�2�

where j and k are the labels of the link and the loop, respectively,
on the path from point O to the mass center of link i, si is the
position vector of mass center Mi from the preconnected joint of
link i, and ps,i is the constant transformation coefficient of vector
ri to vector si.

Hence, the gravitational potential energy of link i can be ex-
pressed as

�eg�i = − mig · Ri = g · �− mipO,1r1 − mips,iri − mi�
j

�
k

pjkrj�
�3�

where g represents the vector of the gravitational acceleration,
pointing downward. The negative sign in Eq. �3� implies that the
maximum gravitational energy of link i is at the highest position
of its mass center.

Note that, for a closed-loop, planar linkage, the path selected
from the reference coordinate to the mass center Mi is not unique,
and thus the representation of Eq. �3� is also not unique. By col-
lecting all constant coefficients for each link vector ri, the overall
gravitational potential energy of an n-link planar linkage becomes

eg = �
i

�eg�i = g · ��
i=1

n

ciri� �4�

where ci, expressed in exponential form of complex number, is a

Fig. 2 Path of a distal mass center from the fixed frame
constant coefficient constituted by mi, pjk, and ps,i.
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Equation �4� indicates that the gravitational potential energy of
n n-link planar linkage can be expressed by the inner product of
ector g and a vector formed by the linear combination of
1 ,r2 , . . . ,rn. However, since the n-link vectors of a closed-loop
lanar linkage are not mutually linearly independent, ci may be
ifferent, and a unique expression of ci is not available. Hence, the
umber of the linearly independent link vectors used in the for-
ulation of the gravitational potential energy in Eq. �4� has to be

dentified.

3.2 Kinematic Constraints of a Linkage System. Kinematic
onstraints of a planar linkage confine the relative motions among
inks. In general, a linear kinematic constraint equation can be
xpressed as

�
k=1

n

qkrk = 0 �5�

here qk is the constant coefficient and qk can be zero, a real or a
omplex number.

Assume qk=0 for k� i , j, Eq. �5� is reduced to

ri + �qj

qi
�rj = 0 �6a�

r

ri = qrj = � �ri�
�rj�

ei��rj �6b�

here q=−�qj /qi�, � is the angle measured from vectors rj to ri,
nd ��ri� / �rj�� is the elongation ratio of the magnitudes of vector ri
ith respect to rj.
The kinematic constraint depicted in Eq. �6� suggests that links
and j have the same angular velocity, i.e., links i and j are

lways kept in a same relative angle of orientation. If links i and
j are adjacent, they are considered rigidly connected since there is
o relative motion between the two links. However, if links i and

j are not adjacent, the two links are in parallel motion and Eq. �6�
s referred to the case where the two links are subjected to a
inematic constraint of parallel motion. A parallel kinematic con-
traint can be resulted from the special arrangement of the link
imensions, e.g., the lengths of the parallel links of a parallelo-
ram must be equal.

On the other hand, for a multiloop, planar linkage, each inde-
endent loop represents a linear kinematic constraint to the mo-
ion of the links of the planar linkage. The loop closure equation
f loop k can be represented as

�
i=1

n

pikri = 0 �7�

or a one-DOF, n-link, planar linkage, the number of the indepen-
ent loops is �n /2−1� �21�. Writing Eq. �7� for each independent
oop k yields a total number of �n /2−1� linearly independent
ector equations with n-link vectors. The number of linearly in-
ependent link vectors of the linkage is then obtained by subtract-
ng the number of loop closure equations from that of link vectors
s

#	B
 = n − �n

2
− 1� =

n

2
+ 1 �8�

here B is referred to the set of linearly independent link vectors
r the base vectors of the linkage, and #	B
 represents the number
f the base vectors.

A set of base vectors, or a basis, is a spanning set of a vector
pace, where all vectors in that space can be represented by the
inear combination of the base vectors in the set. For example, if

= 	v1 ,v2 , . . . ,vn
 is a basis of vector space V, any vector v�V
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can be expressed uniquely by the linear combination of the basis
B as v=�1v1+�2v2+ ¯ +�nvn, where scalars �1 ,�2 , . . . ,�n are
the coordinates of vector space V with respect to the basis B.

Solving the �n /2−1� loop closure equations simultaneously,
any link vector ri of the linkage can be expressed by the linear
combination of the base vectors as

ri = �
k

ck�rk, rk � B �9�

where rk represents a base vector and ck� is the constant coefficient
obtained from the algebraic manipulations of the �n /2−1� loop
closure equations of Eq. �7�.

Substituting Eq. �9� into Eq. �4�, the gravitational potential en-
ergy of a one-DOF, planar linkage can be written in terms of the
�n /2+1� base vectors as

eg = g · ��
i=1

n

ciri� = g · ��
k

ck�rk�, rk � B �10�

Although any �n /2+1� of the n independent vectors of the sys-
tem can be chosen as the base vectors, practically, it is desirable to
select ground vector r1 to be one of the base vectors. Since ground
vector is configuration independent, vector r1 is referred as the
invariant base vector, while the remaining �n /2� base vectors are
referred as the variant base vectors. Hence, Eq. �10� can be further
rewritten as

eg = g · ��
k

ck�rk� + const, rk � B and rk � r1 �11�

where rk stands for a variant base vector and the constant term is
g · �c1�r1�.

Furthermore, since the rotation axes of the ground-adjacent
links are fixed on ground, if the �n /2� variant base vectors repre-
sent the link vectors of the ground-adjacent links, the overall
gravitational potential energy of a one-DOF planar linkage in Eq.
�11� is equivalent to the sum of the gravitational potential energies
of the �n /2� ground-adjacent links. Note that, in the expression of
the gravitational potential energy in Eq. �11�, the multiplication of
the mass and the mass center transformation coefficient for each
ground-adjacent link, say, link k, are replaced by ck�. Equation �11�
further implies that the number of the variant base vectors has to
be equal to or less than the number of the ground-adjacent links if
the gravitational potential energy is to be represented by all base
vectors. It is well known that the maximum number of links con-
nected to any link in a one-DOF planar linkage is �n /2�. Hence, if
the number of the variant base vectors is �n /2�, the number of the
ground-adjacent links of a linkage has to be �n /2�; otherwise the
gravitational potential energy cannot be represented by the vectors
of the ground-adjacent links alone. However, if the number of the
variant base vectors is �n /2−1�, the number of the ground-
adjacent links of a linkage can be �n /2−1� or �n /2�. For example,
if a coupler link of a one-DOF, planar linkage is in translational
motion, the relative orientation of the link with respect to the
ground is always constant, and the vector representing the trans-
lational link becomes linearly dependent with respect to that of
ground link. Hence, the number of the variant base vectors used in
the formulation of the gravitational potential energy can be re-
duced by 1. As a result, the required minimum number of ground-
adjacent links is �n /2−1�. In general, the required minimum num-
ber of ground-adjacent links for an n-link, one-DOF planar
linkage can be obtained by subtracting the number of the addi-
tional kinematic constraints from �n /2�.

Moreover, as indicated previously, the constant coefficient ci in
Eq. �4� may differ if a distinct path is chosen. However, once the
base vectors are selected, the constant coefficient ck� in Eq. �10� is
uniquely determined regardless of the path selection since the

base vectors are mutually linearly independent. The constant co-

MAY 2009, Vol. 131 / 051004-3

E license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



e
p
E
f
N
m
c
d
e
t
m
u
m
o
i
t

4
S

p
i
s
g
w
c
a
B
t
o

w

a
o
t

p
a
e
t
f
i

w

=
=

0

Downloa
fficient ck� is a function of ci and ck�, where ci contains the mass
roperties of the linkage as indicated in Eqs. �3� and �4�, while, in
q. �7�, ck� contains only the geometric information of the linkage

rom the loop closure equations and other kinematic constraints.
ote that, through manipulating the mass center locations and the
asses of links, it is possible to adjust one or more of the coeffi-

ients ck� to be zero. As a result, the number of linearly indepen-
ent base vectors for the formulation of the gravitational potential
nergy can be further reduced. Manipulation on masses and loca-
ions of mass centers can be easily achieved by the counterweight

ethod or using extremely lightweight links. Design of a SBM
tilizing a hybrid method of both counterweights and springs
ethod is also possible. Such a hybrid method uses less number

f springs and, thus, reduces the possibility of sabotage of the
ntegrity of the design due to the possible spring relaxation with
ime.

Elastic Potential Energy of Ground-Attached
prings
If the elastic potential energy of the springs fitted in a one-DOF

lanar linkage can be represented by the same base vectors used
n the formulation of the gravitational potential energy in Eq. �11�,
tatic balance of the system becomes possible. Refer to the
round-adjacent link fitted with a spring, as shown in Fig. 3,
here link 1 represents ground, link j is the inverted pendulum

onnected to ground via a fixed pivot, and � j is the orientation
ngle of vector rj measured with respect to the positive real-axis.
y fitting a zero free-length, extensional, linear spring on link j,

he elastic potential energy of the ground-adjacent link can be
btained as

�es� j = 1
2Kj�x j�2 = 1

2Kjxj · xj �12�

here

xj = bj − aj �13�

nd Kj is the spring constant and aj and bj are the position vectors
f the attachment ends of the spring at pivots A and B, respec-
ively.

Note that a zero free-length spring can be made up with a
retensioned, nonzero free-length spring and possibly with cables
nd pulleys �14,15�. The magnitude of preload is arranged to be
qual to the product of the spring constant and the free length of
he spring at the configuration where the two ends of the zero
ree-length spring coincide with each other. Substituting Eq. �13�
nto Eq. �12� yields

�es� j = − Kjbj · aj + const �14�

here the constant part of Eq. �14� is equal to Kj��aj�2+ �bj�2� /2.
Since vector bj is fixed on link j and equals to bj

��bj� / �rj�ei�j�rj, and aj is a constant vector and equals to aj
iaj

Fig. 3 Installation of a ground-attached spring
��aj� / �g�e �g, Eq. �14� can be further expressed as

51004-4 / Vol. 131, MAY 2009
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�es� j = − Kj� �bj�
�rj�

ei�jrj� . � �aj�
�g�

ei�jg� + const �15�

where �aj� and �bj� are the magnitudes of the position vectors of the
two end points for the ground-attached spring, and � j and � j are
the angles measured from vector g to aj and from vector rj to bj,
respectively.

Noted that, since both ��aj� / �g�ei�j� and ��bj� / �rj�ei�j� are con-
stant coefficients and based on the complex number operation, Eq.
�15� can be rewritten as

�es� j = − Kj� �bj�
�rj�

ei�j�� �aj�
�g�

e−i�j�g · rj + const

= g · ��− Kj

�aj��bj�
�rj��g�

ei�−�j+�j��rj� + const �16�

Equation �16� indicates that the elastic potential energy �es� j of a
ground-attached spring varies with the rotation of the link vector
rj. By fitting a ground-attached spring to each ground-adjacent
link, the overall potential energy of the system can be obtained,
based on Eqs. �11� and �16�, as

etotal = eg + �
j

�es� j = g · ��
j

�cj� − Kj

�aj��bj�
�rj��g�

ei�−�j+�j��rj� + const

�17�

where j is the label of a ground-adjacent link to which a spring is
attached.

In order for the overall potential energy of the linkage to be
invariant at any configuration, the constant coefficient of �cj�
−Kj��aj��bj� / �g��rj��ei�−�j+�j�� in Eq. �17� has to be zero, i.e.,

cj� − Kj

�aj��bj�
�rj��g�

ei�−�j+�j� = 0 �18�

For the two complex numbers cj� and Kj��aj��bj� / �g��rj��ei�−�j+�j� in
Eq. �18� to be equal, both their magnitudes and arguments have to
be equal. Hence,

Kj =
�cj���g��rj�

�aj��bj�
�19�

and

arg�cj�� = − � j + � j �20�
Note that, referring to the ground-adjacent link in Fig. 3 and

based on Eq. �20�, the installing angle of the spring can be repre-
sented by � j =� j −� j −� j =−arg�cj��−� j. This indicates that the
spring installation angle � j varies as the ground-adjacent link ro-
tates and, thus, the variation in the gravitational potential energy
of the system at any configuration can be fully compensated by
that of the elastic potential energy of the spring if the conditions in
Eqs. �19� and �20� are satisfied. Also note that, in addition to the
geometry and mass properties of the linkage, the spring constant
Kj in Eqs. �19� and �20� depends on the magnitudes of both spring
installation vectors aj and bj. In general, the value of spring con-
stant Kj can be arbitrarily adjusted simply by tuning the attached
ends of the spring to other corresponding position. For example, if
a stiffer spring is desired, smaller magnitudes of vectors aj and bj
have to be used. On the contrary, if a softer spring is used, larger
magnitudes of vectors aj and bj are required. Therefore, if the
gravitational potential energy of the linkage can be formulated by
the expression of all ground-adjacent links, the entire gravitational
potential energy of the system is fully decoupled and can be bal-
anced by the elastic potential energy of the spring fitted on each of
the ground-attached links. Since no auxiliary parallel links are
used for the static balance of a linkage, such a design is consid-

ered efficient and less complex.
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Feasible Linkage and Its Associated Spring Installa-
ion Configuration

5.1 General Spring Balancing Linkages. A one-DOF,
-link, planar linkage with �n /2� ground-adjacent links can be
erfectly balanced by attaching a spring to each of the ground-
djacent links. By the use of the graph representation �22�, ten
easible springs balancing four-, six-, and eight-link graphs are
btained, as illustrated in Table 1, where links are represented by
ertices, joints by edges, ground link by double vertices, and
prings by double slash lines. A double slash line represents that a
pring is fitted between the ground vertex and its adjacent vertex.
he linkages in Table 1 are referred to the SBMs of type A where

he numbers of the ground-adjacent links and the variant base
ectors are both equal to �n /2�. Note that the number and the
owercase alphabetic letters represent the number of links and
istinct graph structures, respectively. For instance, graphs “A6a”
nd ”A6b” are both six-link, type-A SBMs with different struc-
ures.

5.2 SBMs With Degenerated Number of Springs. Should
ess ground-attached springs are desired for the static balance of a
ne-DOF, n-link, planar linkage with �n /2� ground-adjacent links,
he number of the variant base vectors must be less than �n /2�.
his can be achieved by imposing additional kinematic constraints

nto the system. Provided one parallel constraint is given as that of
q. �6�. Combining the kinematic constraint of Eq. �6� with the

oop closure equations of Eq. �7� yields a total number of �n /2�
inearly independent equations with n vectors. The number of vec-
ors in the basis becomes

#	B
 = n − �n

2
� =

n

2
�21�

omparing Eq. �21� with Eq. �8�, the number of base vectors in
q. �21� is 1 less than that of Eq. �8�, and the required number of

he ground-attached springs can be reduced by 1. In the search of
he admissible SBMs with parallel motion constraints, three rules
re employed: First, any two adjacent links cannot be assigned as
arallel motion pairs; otherwise they are considered rigidly con-
ected and result in the degeneration of numbers of links, joints,
nd the degrees of freedom of the linkage; second, all kinematic
somorphic structures due to the parallel constraints are excluded;

able 1 Graph representations of one-DOF general SBMs up
o eight links „n is the number of links…
nd third, since the base vectors must be linearly independent of

ournal of Mechanical Design
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each other, only one of the parallel motion vertices can be fitted
with one ground-attached spring. As a result, the graphs of the
admissible SBMs with parallel motion constraints are obtained
and enumerated in Table 2, where the solid vertices represent the
pair of links in parallel motion. The linkages with degenerated
number of springs in Table 2 are referred to the SBMs of type B
where the number of the ground-adjacent links is �n /2� and the
number of the variant base vectors is �n /2−1�. In Table 2, the
graphs are labeled in the same way as those in Table 1, except for
the distinction of spring configurations, e.g., “B6a-1” and ”B6a-2”
have the same structures, but with different spring configurations.

There are other SBMs of type B whose numbers of the ground-
adjacent links and the variant base vectors are both �n /2−1�. For
a one-DOF, n-link, planar linkage with �n /2−1� ground-adjacent
links, the admissible graphs can be obtained by kinematic inver-
sion of the graphs in Table 2 and are illustrated in Table 3. Note
that, in Table 2, the degrees of the ground vertices of the graphs
are all �n /2�, while those in Table 3 are equal to �n /2−1�. Clearly,
for the six-link linkages, only the Watt-I and Stephenson-I and -II
mechanisms appear in Table 3. They correspond to graph numbers
B6c, B6d, and B6e, respectively. Lastly, since the degrees of all
vertices in a four-bar linkage equal to 2, Table 3 contains graphs
of six-link linkages only.

In Tables 1–3, the SBMs are categorized into two types. Type-A
linkages are referred to general SBMs containing �n /2� ground-
adjacent links with �n /2� ground-attached springs fitted between
ground and each of the ground-adjacent links. Type-B linkages are
referred to SBMs with degenerated number of springs. Note that,
for type-B linkage, the additional kinematic constraints have to be
linearly independent of the loop closure equations.

6 Examples

6.1 Example I: Stephenson-III Type Spring Balancing
Linkage. Graphs “A6a” and “A6b” in Table 1 are the Watt-II and
the Stephenson-III type SBMs, respectively. Referring to the gen-
eral Stephenson-III type linkage in Fig. 4, mi represents the mass

Table 2 Graph representations of one-DOF, spring balancing
parallel mechanisms with „n /2… ground-adjacent links and
„n /2−1… springs up to six links „n is the number of links…
center of link i, si is the position vector of mass center mi from its
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reconnected joint on link i, aj and bj are the position vectors of
he fixed end and the link end of the spring attachment points on
round-adjacent link j, respectively, and Kj is the spring constant
f the ground-attached spring on link j. Although link vector ri
an be any arbitrary vector fixed on link i, for simplicity, ri is
efined as a vector on link i between joints, as illustrated in Fig. 4.
or an arbitrarily selected path from the referenced origin O, the
osition vector of the mass center for each link is

R2 = �pO,1 + 1�r1 + ps,2r2 �22a�

R3 = �pO,1 + 1�r1 + r2 + ps,3r3 �22b�

R4 = �pO,1 + 1�r1 + r2 + r3 + ps,4r4 �22c�

R5 = �pO,1 + 1�r1 + r2 + �1 + p32�r3 + ps,5r5 �22d�

R6 = �pO,1 + 1�r1 + r2 + �1 + p32�r3 + r5 + ps,6r6 �22e�

here ps,i is the constant coefficient transforming vector ri to
ector si, pO,1r1 is the position vector from O to the fixed pivot of
ink 4, and complex numbers p32 and p12 are the constant trans-
ormation coefficients for the ternary links 1 and 3, respectively.

According to Eqs. �3� and �4�, the overall gravitational potential
nergy is the sum of the gravitational potential energy of each

able 3 Graph representations of one-DOF, n-link, spring bal-
ncing parallel mechanisms with „n /2−1… ground-adjacent

inks up to six links „n is the number of links…

ig. 4 Stephenson-III type linkage with three ground-attached

prings
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link. By substituting Eq. �22� into Eq. �3�, the expressions for the
gravitational potential energy of the system are expressed in terms
of six-link vectors as Eq. �4� as

eg = g · ��
i=1

6

ciri� �23�

where

c1 = �1 + pO,1��− m2 − m3 − m4 − m5 − m6� �24a�

c2 = − m2ps,2 − m3 − m4 − m5 − m6 �24b�

c3 = − m4 + �1 + p32��− m5 − m6� − m3ps,3 �24c�

c4 = − m4ps,4 �24d�

c5 = − m6 − m5ps,5 �24e�

c6 = − m6ps,6 �24f�

The two linearly independent loop closure equations of the
Stephenson-III type linkage are given as

r1 + r2 + r3 + r4 = 0 �25a�

and

p12r1 − r4 + p32r3 + r5 + r6 = 0 �25b�

Choosing the vectors of ground and the ground-adjacent links as
the base vectors, vectors r3 and r5 can be expressed in terms of the
base vectors r1, r2, r4, and r6. By collecting the variant base vec-
tors terms, the gravitational potential energy in Eq. �23� can be
rewritten as

eg = g · � �
j=2,4,6

cj�rj� + const �26�

where

c2� = − m3 + m5p32 − m2ps,2 + m3ps,3 − m5p32ps,5 �27a�

c4� = m4 + m5 + m5p32 + m3ps,3 − m4ps,4 − m5ps,5 − m5p32ps,5

�27b�

and

c6� = m5ps,5 + m6 − m6ps,6 �27c�

Note that, since r1, r2, r4, and r6 are chosen as the base vectors,
the constant coefficients c2�, c4�, and c6� are uniquely determined.
Since the term g · �c1�r1� in Eq. �26� is constant and irrelevant to the
spring design conditions, it is not expressed explicitly. By fitting a
ground-attached springs between ground and links 2, 4, and 6,
respectively, as shown in Fig. 4, the balance of the total potential
energy of the system can be accomplished, and the spring con-
stants and the spring attachment points for each of the ground-
attached springs can be determined based on Eqs. �19� and �20� as

Kj =
�cj���g��rj�

�aj��bj�
, j = 2,4,6 �28a�

and

arg�cj�� = − � j + � j, j = 2,4,6 �28b�

The spring constants K2, K4, and K6 and the spring design param-
eters �a2�, �a4�, �a6�, �b2�, �b4�, �b6�, �2, �4, �6, �2, �2, and �2 can be
selected according to Eq. �28�. Consider a linkage with given
geometry and mass properties provided in Table 4 where the ini-
tial configuration of the linkage represented by vectors rj and sj
for j=1,2 , . . . ,6 is also included. With predetermined values of
spring constants K2=1000 N /m, K4=3000 N /m, and K6
=5000 N /m, the spring attachment points of the three springs are

readily obtained via Eqs. �19� and �20� and listed in Table 5.
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imilarly, the design of a spring balancing Watt-II linkage can be
mplemented using this methodology applicable to the design of
he Stephenson-III type linkage.

6.2 Example II: Spring Balancing Parallelogram Four-
ar Linkage. The four-bar parallelogram of graph B4 in Table 2

s the simplest structure of a parallel linkage. As shown in Fig. 5,
ue to its special geometry, links 2 and 4 are always parallel to
ach other, and the kinematic relation between links 2 and 4 is

r4 = − r2 �29�
he coupler link 3 is in circular translation and its orientation is
arallel with respect to ground. According to Eq. �11�, the gravi-
ational potential energy of the parallelogram four-bar linkage is

eg = g · ��
j=2,4

cj�rj� + const �30�

here

c2� = − m2ps,2 − m3 + m3ps,3 �31a�
nd

c4� = − m4ps,4 + m4 + m3ps,3 �31b�
quation �29� is considered as the additional kinematic constraint

o a general four-bar linkage. Substituting Eq. �29� into Eq. �30�
ields

eg = g · �c2�r2� + const �32�
here

c2� = − m2ps,2 − m3 − m4 + m4ps,4 �33�

Table 4 Geometry and mass prope

Link i Geometry properties �m�

1 r1=0.9i; p12=0.114−
2 r2=−0.416+0.422i;
3 r3=0.334−0.893i; p32=0.108−
4 r4=0.082−0.450i;
5 r5=0.200+0.346i;
6 r6=−0.100−0.534i;

Table 5 Spring design parameters

pring on
ink j

Stiffness
�N/m� Attachment points �m�

1000 a2=−0.173−0.040i; b2=−0.334+0.337i;
3000 a4=−0.202+0.144i; b4=0.068−0.340i;
5000 a6=0.155−0.094i; b6=−0.078−0.428i;
Fig. 5 Spring balancing parallelogram four-bar linkages
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Equation �32� shows that the gravitational potential energy of
the parallelogram four-bar linkage can be described by one variant
base vector r2; thus, the system requires only one ground-attached
spring for the static balance of the system. The spring design
conditions are obtained by replacing the constant coefficient cj�
with c2� in Eqs. �19� and �20�. In comparison with a general four-
bar linkage, the number of springs required in a statically bal-
anced parallelogram four-bar linkage is degenerated by 1. It is to
be noted that, for a parallelogram four-bar linkage, the spring can
be fitted between ground and link 2 or between links 4 �or 2� and
3. Because of the parallel motion, the coupler link, link 3, pro-
vides a “pseudo” ground at the distal end. This is the main reason
for many designers to adopt parallel auxiliary links in the spring
balancing linkages.

6.3 Example III: Spring Balancing Watt-I Parallel Motion
Generator. Another example of a one-DOF linkage with parallel
motion is a Watt-I parallel motion generator �23�. Referring to
graph B6c-4 in Table 3, the dimensions of the six-link, Watt-I
linkage are constructed, as shown in Fig. 6, where link 5 and
ground link are the parallel pairs. Link 5 always moves in parallel
with respect to ground and undergoes curvilinear translation.
Again, as depicted in Eq. �4�, the gravitational potential energy of
the Watt-I six-link linkage can be expressed in terms of six link
vectors, r1 ,r2 , . . . ,r6, and the loop closure equations of the link-
age are

r1 + r2 + r3 + r4 = 0 �34a�
and

p42r4 + p32r3 + r5 + r6 = 0 �34b�
From Eq. �8�, the parallelism between link 5 and ground is ex-
pressed as

r5 = qr1 �35�
where

s of the Stephenson-III type linkage

Mass properties �Kg, m�

25i;
m2=1.396; s2=−0.208+0.211i;

87i; m3=5.065; s3=0.167−0.608i;
m4=0.821; s4=0.041−0.225i;

m5=20.946; s5=−0.046+1.398i;
m6=1.738; s6=−0.050−0.267i;
rtie

0.1

0.1
Fig. 6 Watt-I parallel motion generator with two springs
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q =
�r5�
�r1�

ei�p �36�

nd �p is the relative orientation angle of link 5 with respect to
round.

Since the kinematic constraints of the loop closure equations of
q. �34� and the parallel motion of Eq. �35� are linearly indepen-
ent in general, the two vectors, r3 and r6, can be obtained as
inear combination of the base vectors r1, r2, and r4 as

r3 = − r1 − r2 − r4 �37a�
nd

r6 = �− q + p32�r1 + p32r2 + �p32 − p42�r4 �37b�
ubstituting Eqs. �35� and �37� into Eq. �4�, the gravitational po-

ential energy of the six-link Watt-I linkage is obtained as

eg = g · ��
j=2,4

cj�rj� + const �38�

here

c2� = − m3 − m2ps,2 + m3ps,3 + m5p32 + m6p32 − m6p32ps,6

�39a�
nd

c4� = m4 + m5 + m6 + m3ps,3 + m5p32 + m6p32 − m4ps,4 − m6p32ps,6

+ m6p42ps,6 �39b�
itting a ground-attached spring to each of ground-adjacent links
and 4, respectively, and followed by the cancellation of the

ariations in the gravitational potential energy and the elastic po-
ential energy of the system, the design parameters of the spring
an be obtained via Eq. �18�. This example demonstrates that the
esign of a statically balanced one-DOF, n-link, planar parallel
inkage with �n /2−1� ground-adjacent link can be accomplished
y using degenerated number of springs.

The motions of the Stephenson-III type six-bar linkage of Fig.
, the parallelogram four-bar linkage of Fig. 5, and the Watt-I type
ix-bar linkage of Fig. 6 are simulated by ADAMS, and the gravi-
ational, elastic, and total potential energies versus crank angle for
n entire cycle are plotted in Figs. 7�a�–7�c�, respectively. Figure
shows that the variations in the gravitational potential energies

f the three systems can be perfectly compensated by that of the
lastic potential energies of the ground-attached springs.

In general, a Watt-I linkage with only two ground-adjacent links
annot be statically balanced with ground-attached springs alone.
owever, due to the inclusion of the kinematic constraint of par-

llel motion, the number of the base vectors required in the for-
ulation of the gravitational potential energy of the Watt-I linkage

s degenerated by 1. Hence, only two ground-attached springs are
eeded. The concept of degeneration of the linearly independent
ectors in the formulation of the gravitational potential energy of
he planar linkage can be extended to linkages of higher links.

ith the aid of graph representations, more feasible higher-link
BMs can be enumerated systematically. In practice, static bal-
nce of a one-DOF, n-link planar linkage with less than �n /2�
round-adjacent links can be obtained, as long as the kinematic
onstraint equations are linearly independent of the existed loop
losure equations.

Conclusion
A systematic methodology for the design of a full-cycle, stati-

ally balanced, one-DOF planar linkage with revolute joints only
s presented. In the methodology, no auxiliary parallel links are
equired. Design of a statically balanced, one-DOF, n-link, planar
inkage with �n /2� ground-adjacent links can be accomplished by
tting a ground-attached spring to each of the ground-adjacent

inks. Admissible graphs of one-DOF planar linkages of up to

ight links are enumerated. It is also shown that the SBMs with
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degenerated number of the springs can be obtained, provided that
the prescribed kinematic constraints of the linkage are linearly
independent of the inherited loop closure equations. This method-
ology is successfully demonstrated by the designs of the static
balances of a general Stephenson-III type six-bar linkage with
�n /2� ground-adjacent links and a Watt-I type six-bar linkage of
parallel motion with �n /2−1� ground-adjacent links. Results are
simulated and justified by the software ADAMS.
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