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A novel methodology for the design of a gravity-balanced serial-type spatial manipulator
is presented. In the design, gravity effects of the system can be completely compensated at
any configuration. The gravity balance of the n-DOF manipulator is achieved by the
suspensions of only n zero-free-length springs, where each spring is individually fitted
between a primary link and its adjacent auxiliary link. No spring has to be installed
across the spatial manipulator from a far remote link to ground such that the motion
interference among the springs and the links can be prevented. Besides, since the embed-
ded auxiliary links along the primary links of the manipulator form a series of spatial
parallelogram revolute-spherical-spherical-revolute modules, the active DOFs of the sys-
tem remain the same as the primary manipulator and the range of motion of the manipu-
lator will not be hindered. As a result, the n-DOF manipulator can serve the general
function of an articulated serial-type manipulator in kinematics. The simulated results of
a 6DOF gravity-balanced manipulator modeled on ADAMS shows that the static equilib-
rium as well as the kinematics of the system can be successfully accomplished by this
proposed methodology. �DOI: 10.1115/1.4001816�
Introduction
A mechanism is perfectly gravity balanced if the considered

ystem is in static equilibrium at all configurations, i.e., the grav-
ty effects are completely eliminated from the system of interest
1,2�. For robotic manipulators, gravity balance of the system ben-
fits from the improvement of input energy efficiency �3–6�. As a
onsequence, little or no external force is required to sustain the
ystem payloads at any configuration or while slowly operated
ith a vertical movement. The gravity balance of a system can be

chieved by various methods, e.g., the counterweight method, the
inkage and cam mechanism method, and the spring suspension

ethod �3�. With the advantage of having relatively small inertia,
se of springs in balancing techniques is considered as a more
fficient approach than others in the perspective of saving energy.

The simplest gravity-balanced mechanism is a spring-loaded,
round-pivoted pendulum �1,2�. By the installation of a zero-free-
ength spring, the full compensation of gravitational force of the
endulum by the spring force can be easily achieved at any posi-
ion. Over the years, extensive studies on the designs of perfectly
ravity-balanced planar mechanisms comprising of zero-free-
ength springs had been reported �7–10�. Various arrangements for
he mechanical realization of zero-free-length springs, using con-
entional nonzero-free-length springs, have also been presented
7,11–13�. The ideally weight-negligible spring device can be re-
lized by the use of cables, pulleys, and linear springs �14,15�.
ome proposed a spring parameter optimization method to im-
rove the balancing accuracy for normal spring installations �16�.

One of the difficulties for the design of a spring balancing
echanism comes from the selection of the spring attachment

oints to generate an exact amount of forces or torques to coun-
erbalance the gravity effects of the whole mechanism during mo-
ions. Passive auxiliary links are usually used to trace the center of
ravity and to provide proper attachment points for fitted springs.
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Nevertheless, while the spring balancing techniques are applied to
a spatial mechanism, e.g., a manipulator, the arrangement of aux-
iliary links and springs becomes complicated and cumbersome.
Although numerous gravity-balanced designs of spatial serial-type
mechanisms have been proposed �12,17–22�, most of them are
only applicable to specific applications due to the limited degrees
of freedom �DOFs� or the restricted orientations of the joint axes
of the mechanisms. Designs of spring-loaded gravity-balanced
spatial manipulator with the ability to serve a general spatial mo-
tion are few. Recently, Agrawal and Fattah �19� proposed a meth-
odology for the gravity balance of a general spatial manipulator
by the use of pantograph-alike, parallel, auxiliary links along with
the zero-free-length springs to compensate the gravitational forces
of the system. However, the arrangement of auxiliary links and
springs is rather complicated, especially for high-DOF mecha-
nisms. As reported in their study, a 3DOF spatial manipulator
requires five zero-free-length springs where one of the springs has
to be fitted between the base and the mass center of the system.
Because of this, possible motion interference among the auxiliary
links, the attached springs, and the manipulator itself may inter-
pose the range of motion of the manipulator.

In this paper, a novel methodology for the design of a spring-
loaded gravity-balanced spatial manipulator is developed, where
the static equilibrium condition is derived based on the potential
energy method. The overall gravitational potential energy of n
serially connected links is formulated as sum of n independent
subsystems where each subsystem is considered in pure rotation
in space. Extended from the balancing technique of the well-
known single-link equilibrator where the spring is attached be-
tween ground and the rotating link, a concept of a pseudobase on
each of the n subsystems is thus developed. Since the n pseudo-
bases travel in space along with their associated links, n consecu-
tive modules of spatial parallelogram revolute-spherical-spherical-
revolute �RSSR� linkage are constructed to provide a pseudobase
for each subsystem. With the attachment of a zero-free-length
spring to a primary link and its adjacent pseudobase link, the
gravity-balanced design of the n-DOF spatial manipulator can be
accomplished. In this proposed methodology, no spring has to be
installed across a number of primary links from a remote link to

ground and, hence, the motion interference among the manipula-
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or, auxiliary links, and springs can be largely reduced. The simu-
ated results of a 6DOF gravity-balanced spatial manipulator as an
ndustrial manipulator are presented in support of the proposed

ethodology.

Formulation of the Gravitational Potential Energy
f a Manipulator Into That of n Rotational Subsystems
Consider n serially connected links, as shown in Fig. 1, where

ll links are post- and preconnected with a revolute joint. Let
rame 0 be fixed on ground at point O0 and frame i fixed on link
at point Oi, where Oi is on the axis of the revolute joint connect-

ng links i and �i+1�. The gravitational potential energy of link i
an be expressed as

Ug,i = − mig · Si = − mig · �Ri + si� �1�

here the pointing-downward vector g is the gravity vector, mi is
he mass of link i, and Ri is the position vector of point Oi from

0. Vectors Si and si are the position vectors of the mass center of
ink i from points O0 and Oi, respectively.

Referring to Fig. 1,

Ri = Ri−1 − ri �2�

here ri, pointing from points Oi to Oi−1, is referred to the link
ector of link i.

Writing Eq. �2� j times for j=1, . . , i and summing the j recur-
ive equations, Eq. �2� can be rewritten as

Ri = − �
j=1

i

rj �3�

ubstituting Eq. �3� into Eq. �1� yields

Ug,i = − mig · �si − �
j=1

i

rj� �4�

he total gravitational potential energy of the n serially connected
inks can be obtained by summing Eq. �4� for each link i and
earranging the right-hand-side terms of Eq. �4� as

�
i=1

n

Ug,i = − g · �
i=1

n �misi − �
j=i

n

mjri� �5�

quation �5� can be further expressed in a condensed form as

�
i=1

n

Ug,i = − �
i=1

n

�ig · �i �6�

here

�i = mi + �
n

mj �7�

Fig. 1 A segment of the n serially connected links
j=i
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�i =

misi − �
j=i

n

mjri

mi + �
j=i

n

mj

�8�

The gravitational potential energy of the n serially connected
links in Eq. �6� can be considered as sum of the gravitational
potential energy of n subsystems, where each subsystem contrib-
utes the gravitational potential energy of �−�ig .�i�, for i
=1,2 . . . ,n, to the system, respectively. As indicated in Eq. �7�,
each subsystem possesses the mass of link i and the accumulated
mass of link i through link n. Since vectors si and ri are both fixed
on link i, vector �i of Eq. �8� is also fixed on link i. This indicates
that vector �i is only dependent on the orientation of link i with
respect to the inertia frame and is irrelevant to the absolute posi-
tion of link i. Hence, the gravitational potential energy of each
subsystem i is equivalent to that of a pure-rotation link, with the
mass of �i and with �i as its position vector of mass center, which
resembles to a single-link equilibrator, as shown in Fig. 2. This, in
turn, implies that static equilibrium condition of each subsystem
can be possibly obtained if each spring of the system is desired to
be installed locally.

3 The Single-Link Equilibrator and the Pseudobases
of n-DOF Manipulator

Consider the single-link equilibrator comprised of a link with
the mass of � mounted on ground with a spherical joint and a
zero-free-length spring fitted between ground and the link, as il-
lustrated in Fig. 2. The static balance of such an equilibrator is
well known and justified �23,24�. At any configuration, the overall
potential energy, namely, the sum of elastic potential energy and
the gravitational potential, is constant as

1

2
K�b − a�2 − �g · � = const �9a�

or

− Kb · a + 1
2K�a2 + b2� − �g · � = const �9b�

where a and b, respectively, are the position vectors from spheri-
cal joint O to point A� on ground and point B� on the link, � is the
position vector of mass center of the link, and K is the spring

Fig. 2 Gravity balance of a rigid body mounted on ground with
a single spring
constant.
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Since the angle between vectors a and b and the angle between
ectors g and � are both dependent to the rotation of the link, if
he variable terms �Ka ·b� and �−�g ·�� in Eq. �9b� are always
qual as

Ka · b = − �g · � �10�
hen, Eq. �9b� can be satisfied at any configuration of the link.
quation �10� is thus a sufficient condition of Eq. �9b� and is the
quilibrium condition of the single-link equilibrator. In order to
atisfy the condition of Eq. �10�, one of the easiest arrangements
s to install a spring at the attachment points with OA� parallel to
he direction of gravity and OB� parallel to the position vector of
he mass center. With such arrangement, spring constant K and the

agnitudes of a and b can be readily selected according to Eq.
10�. Once the spring attachment points A� and B� are determined,
spring triangle A�B�O is formed. In general, as shown in Fig. 2,

ny spring attachment points A and B forming a spring triangle
BC congruent and parallel to A�B�O guarantee the same spring
eflected length AB and the equilibrium condition of the system
emains satisfied.

According to Eq. �6�, the gravitational potential energy of sub-
ystem i can be considered equivalently as a rigid body mounted
n ground with the mass of �i and with �i as its position vector of
ass center. The gravitational potential energy of subsystem i can

e expressed as

�g,i = − �ig · �i �11�

n an arbitrary point Ci of link i, a zero-free-length spring of
tiffness Ki is attached with a spring triangle AiBiCi, as shown in
ig. 3. The elastic potential energy of spring Ki can be expressed
s

Us,i = 1
2Ki��bi − ci� − �ai − ci��2 = − Ki�ai − ci� · �bi − ci� + 1

2Ki�lCA,i
2

+ lCB,i
2 � �12�

here lCA,i and lCB,i are the magnitudes of vectors �ai−ci� and
bi−ci�, respectively.

Fig. 3 Spring triangle AiBiCi for each link i
Fig. 4 Pseudobases and

ournal of Mechanisms and Robotics
Let lines CiAi and CiBi be parallel to the gravity vector and the
mass center position vector �i, respectively. Vectors �ai−ci� and
�bi−ci� can then be obtained as

ai − ci = −
lCA,i

g
g �13�

bi − ci =
lCB,i

�i
�i �14�

Substituting Eqs. �13� and �14� into Eq. �12� yields

Us,i =
KilCA,ilCB,i

g�i
g · �i +

1

2
Ki�lCA,i

2 + lCB,i
2 � �15�

For the gravitational potential energy of subsystem i to be bal-
anced by the elastic potential energy of spring Ki, the sum of Eqs.
�11� and �15� has to be constant. Thus, one sufficient equilibrium
condition comprising of the following equations can be identified
as

KilCA,ilCB,i = �ig�i �16�

lCA,i = const �17�
and

lCB,i = const �18�

Based on Eq. �16�, the spring stiffness Ki and the spring install-
ing lengths, lCA,i and lCB,i, can be obtained, where any two of the
design parameters, Ki, lCA,i, and lCB,i, can be determined arbi-
trarily. According to Eqs. �17� and �18�, point Bi can be a fixed
point on link i, while side CiAi is vertically lying on a rigid body
jointed to link i at point Ci. The rigid body is referred to the
pseudobase of link i, for its resemblance of the base, as shown in
Fig. 2. For the balance of gravitational potential energy each sub-
system i, n pseudobases are constructed along with the primary
chain of link i, as shown in Fig. 4.

4 Realization of Pseudobases by Series of Spatial Par-
allelogram RSSR Modules

4.1 Kinematics of a Spatial Parallelogram RSSR Linkage.
The kinematic requirement of a pseudobase is that the line drawn
between the spring attachment point Ai and the spherical joint Ci
always remains vertical regardless of the motion of link i. Such a
parallel motion between the pseudobase and ground can be
achieved by the application of a spatial parallelogram linkage. As
shown in Fig. 5, an arbitrary spatial parallelogram RSSR linkage
can be defined by the twist angle � and the constant lengths of
PQ, QN, NO, OP, and QM. The features of the spatial parallelo-
gram RSSR linkage are as follows: Axes of the revolute joints at
P and M are parallel; points P, Q, and M are on the same plane;
the attached springs

AUGUST 2010, Vol. 2 / 031003-3
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engths PQ and QN are equal to lengths NO and OP, respectively.
y the mobility equation �25�, a RSSR mechanism has one active
OF and one idle DOF �26� as

F = ��n − j − 1� + �f i = 6�4 − 4 − 1� + 2 · 1 + 2 · 3 = 2 �19�
ue to the special geometrical arrangement of parallelogram
QNO, the active DOF allows links 2 and 4 rotating with the

ame angular velocity and line ON remains in parallel with line
Q at any configuration. The idle DOF allows link 3 to spin
xially about the line passing through the two spherical joints O
nd N. Hence, if line PQ is in vertical direction with respect to a
ase, link 3 is a pseudobase with line ON remaining vertical at all
imes. Furthermore, the line jointing any two arbitrary points N�
nd O� on links 2 and 4, respectively, is also a vertical line if
uadrilateral PQN�O� is a parallelogram. This indicates that the
ositioning of link 3 is not uniquely located on link 2 as long as a
arallelogram can be formed. It is important to note that, the par-
llelism of lines PQ, ON, and O�N� holds for any configuration of
he RSSR linkage. Once line PQ is constrained vertically, lines
N and O�N� remain vertical as well. Since twist angle � is the

ngle between lines PQ and MQ, as the direction of joint axis MQ
f the revolute joint at M changes, the twist angle � will also
hange. Link 2 of the floating RSSR linkage can be in a general
patial motion with three complete rotations as �i� rotation about
xis MQ, �ii� rotation of twist angle �, namely, about an axis
ormal to the plane containing lines PQ and MQ, and �iii� rotation
bout axis PQ, and three complete translations as the free trans-
ations of line PQ. Conclusively, the additional links 1, 3, and 4
hained to link 2 do not constraint the motion of link 2.

4.2 Construction of Pseudobases by a Series of RSSR
odules Onto the Spatial Manipulator. Given any spatial, all-

evolute, serial-type manipulator, the pseudobase for each primary
ink can be easily obtained by embedding a series of consecutive
patial parallelogram RSSR linkages onto the manipulator, as il-
ustrated in Fig. 6. For the first auxiliary RSSR linkage, the rota-
ion axis of the revolute joint connecting auxiliary link 1 and
round has to be parallel to that of the revolute joint connecting
ink 1 and ground and these two axes have to be in the same
ertical plane, according to the features of the spatial RSSR par-

llelogram. With such arrangements, any vertical line O0Ô0 that
ntersects both revolute axes can be found. By forming quadrilat-

ral O0C1D1Ô0 as a parallelogram, spherical joint C1 on primary
ink 1 and spherical joint D1 on auxiliary link 1 can be located.

imilarly, by forming quadrilateral O0O1Ô1Ô0 as another paral-

elogram, the positions of points O1 and Ô1 can also be obtained.

s a result, both lines C1D1 and O1Ô1 are vertical. Following the

Fig. 5 A spatial parallelogram RSSR linkage
onstruction of the first RSSR linkage, the second module can be

31003-4 / Vol. 2, AUGUST 2010
constructed based on the vertical line O1Ô1 following the similar
procedure. A spatial serial-type manipulator with n active DOFs
can then be constructed with n consecutive RSSR modules. Since
the entire system, including the primary and the auxiliary links,
comprises 3n moving links, 2n revolute joints, and 2n spherical
joints, the mobility of such a system can be calculated as

F = 6��3n + 1� − 4n − 1� + �2n� · 1 + �2n� · 3 = 2n �20�

Equation �20� indicates that, disregarding the n idle DOFs, the
entire mechanism has n active DOFs, same as the primary ma-
nipulator. This also suggests that the auxiliary linkage does not
add additional motion constraints to the original kinematic chain.

The spherical joints can be realized by ball joints or spherical
mechanisms. However, a ball joint usually suffers from a limited
range of rotation and induces a singular configuration, resulting in
a limited range of motion of the mechanism. A singularity-free
spherical joint had been proposed and can be applied �27�.

5 Gravity Balance of the Spatial Manipulator
Referring to the spatial equilibrator, as shown in Fig. 7, the

gravity effects due to the pseudobases and the auxiliary links can
be considered as follows. Since the auxiliary links are connected
serially along with the primary links of the manipulator, the total
gravitational potential energy of the auxiliary links can be derived
in a similar form as that of Eq. �5� as

�
i=1

n

Ûg,i = − g · �
i=1

n �m̂iŝi − �
j=i

n

m̂jr̂i� �21�

where m̂i is the mass of auxiliary link i, ŝi and r̂i are the position
vectors of the mass center, and the link vector of auxiliary link i

referenced from origin Ôi of frame î, respectively.
The gravitational potential energy of the pseudobase i is

Ug,i
� = − mi

�g · �Ri + ci + si
�� �22�

where mi
� is the mass of pseudobase i, ci is the position vector of

point Ci referenced from origin Oi, and si
� is the position vector of

the mass center of pseudobase i referenced from the spherical
joint Ci.

Since line CiDi is parallel to the gravity vector, the inner prod-
uct of the gravity vector and vector si

� is constant. Substituting Eq.
�3� in Eq. �22� yields

�
i=1

n

Ug,i
� = − g · �

i=1

n �mi
�ci − �

j=i

n

mj
�ri� + const �23�

By summing Eqs. �5�, �21�, and �23�, the overall gravitational
potential energy of the spatial equilibrator in Fig. 7 can be rewrit-
ten in a condensed form as that of Eq. �6� where the combined
mass and its position vector can be modified from Eqs. �7� and

Fig. 6 Two consecutive RSSR linkages in series
�8�, respectively, as

Transactions of the ASME
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�̃i = mi + m̂i + mi
� + �

j=i

n

�mj + m̂j + mj
�� �24�

�̃i =

misi + m̂iŝi + mi
�ci + �

j=i

n

�− mjri − m̂jr̂i − mj
�ri�

mi + m̂i + mi
� + �

j=i

n

�mj + m̂j + mj
��

�25�

ith Eqs. �24� and �25�, the positions of the n combined mass
enters can be identified on each primary link of the spatial ma-
ipulator. Vectors si, ci, and ri referenced from origin Oi can be
epresented by constant coordinates of frame i. Since frames i and

are the coordinate systems fixed, respectively, on primary link i
nd auxiliary link i and these two coordinate systems are always

n parallel, coordinates of frames î can be easily transformed by an
dentity matrix to coordinates of frame i. Hence, vectors ŝi, r̂i and
he combined mass center position vector �̃i can be represented
y constant coordinates of frame i. Thus, by replacing �i and �i
f Eq. �16� with the modified parameters �̃i and �̃i, the balancing
onditions of the spatial manipulator can be obtained with the
pring stiffness and the spring installing lengths, for each link i.

A Simulated Model of a 6DOF Gravity-Balanced
anipulator
Figure 8 shows a 6DOF, six-link industrial manipulator with

ll-revolute joints. Since the axis of the first joint between ground
nd link 1 is in the direction of gravity, the total gravitational
otential energy induced by the rotation of link 1 about the first
oint axis does not change. Hence, the problem for the gravity
alance of the considered manipulator is simplified to obtain the
tatic equilibrium of the remaining five links. As shown in Fig. 8,
ve pseudobases and five auxiliary links are added to the system.
lthough the simulation model shown may have motion interfer-

nces at certain postures, an actual embodiment of a system with-
ut interference is possible if links are properly shaped. Since
ach pair of the auxiliary link and the primary link has identical
irection of rotation, their instantaneous working planes, which
re normal to the instantaneous rotation axes, can be parallel.

rames i and î are, respectively, attached to link i and auxiliary
ink i for i=0,1 ,2 , . . . ,6. The Denavit–Hartenberg �DH� param-

ters �28� of the manipulator for frames i and î are listed in Table
, respectively.

The mass properties and the link geometries required for Eqs.
24� and �25� are listed in Table 2. The link vectors of link i and

Fig. 7 The general n-
uxiliary link i, the mass center position vectors of link i, the

ournal of Mechanisms and Robotics
auxiliary link i, and the position vectors of the center of spherical
joint on link i are all expressed in coordinates with respect to
frame i and shown in Table 2. The accumulated point mass �̃i and
its position vector �̃i of subsystem i are evaluated according to
Eqs. �24� and �25� and also tabulated in Table 2. According to Eq.
�16�, two spring design parameters Ki and lCA,i are selected before
lCB,i is determined. The values of the spring parameters and the
coordinates of the spring attachment points, Ai and Bi of each
spring, with respect to frame i are derived from Eqs. �13� and �14�
and listed as the ai and bi in Table 3.

The manipulator, along with the pseudobases and auxiliary
links, are modeled in the simulation software ADAMS with a speci-
fied motion given as follows: the angular displacement function
for each joint i with respect to time is defined as

F spatial manipulator

Fig. 8 A 6DOF gravity-balanced manipulator

Table 1 DH parameters for the manipulator „data given in m…

Frame i / î di / d̂i �i / �̂i ai / âi

�i / �̂i
�deg�

1 / 1̂ 0/0.1 �1 0.1/0.1 90/90

2 / 2̂ 0/0 �2 0.4/0.4 0/0

3 / 3̂ 0/0 �3 0/0 90/90

4 / 4̂ 0.5/0.5 �4 0/0 �90/�90

5 / 5̂ 0/0 �5 0/0 90/90

6 / 6̂ 0.27/0.27 �6 0/0 0/0
AUGUST 2010, Vol. 2 / 031003-5
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0

�i�t� = �0 	 t 
 tI, �I

tI 	 t 
 tF, a0 + a1t + a2t2 + a3t3

tF 	 t 
 10, �F
	 �26�

here �I and �F are the initial and final values of the actuated joint
ngles �i at time tI and tF, respectively.

Table 3 Spring

Spring i
Ki

�kN/m�
lCA,i
�m�

lCB,i
�m�

2 20.0 0.1 0.13
3 2.0 0.08 0.01
4 15.0 0.08 0.09
5 2.0 0.08 0.05
6 1.0 0.08 0.09

Table 4 Coefficients of th

Joint i tI tF �I �F

1 0 5 1.57 �0.42
2 0 5 1.57 0.57
3 0 5 0 1
4 1 3 0 1
5 5 9 0 1.2
6 5 9 0 2.5

Table 2 Parameters of mass and geom

Link i 2 3

mi 23.21 24.51
mi

� 0.47 0.47
m̂i 2.38 0.81
si ��0.20, 0.00, �0.1� �0, 0, 0�
ŝi ��0.17, 0.07, 0.06� �0, 0.02, 0.10�
ri ��0.4, 0, 0� �0, 0, 0�
r̂i ��0.4, 0, 0� �0, 0, 0�
ci ��0.3, 0.1, �0.1� �0, 0.06, 0.09�
�̃i 105.92 79.59
�̃i �0.25, 0.00, �0.02� �0, 0.00, 0.00� �
Fig. 9 Variations of p

31003-6 / Vol. 2, AUGUST 2010
From tI to tF, a cubic polynomial function is assumed for the
angular displacement of each joint. The units for the angular dis-
placement and time are given in radian and seconds, respectively.
The coefficients of the cubic polynomials of Eq. �26� for each
joint i are listed in Table 4.

Figure 9 shows the results of the simulated motion described in

ign parameters

ai
�m�

bi
�m�

��0.2, 0.1, �0.1� ��0.17, 0.10, �0.11�
�0.08, 0.06, 0.09� �0, 0.06, 0.09�
�0.08, 0.21, 0.06� �0, 0.12, 0.06�
�0.08, �0.1, 0.1� �0, �0.09, 0.15�

�0.08, �0.06, �0.06� �0, �0.06, 0.03�

int displacement function

a0 a1 a2 a3

57 0.0000 �0.2388 0.0318
57 0.0000 �0.12 0.016

0 0.12 �0.016
�2.25 1.5 �0.25

3125 �5.0625 0.7875 �0.0375
4844 �10.5429 1.6406 �0.0781

ry properties „data given in kg and m…

4 5 6

15.13 6.12 2.20
0.47 0.47 0.47
1.58 1.32 0.27

0.16, 0.00� �0, 0.02, 0.11� �0, 0.00, �0.02�
0.13, 0.00� �0, 0.01, 0.09� �0, �0.02, �0.08�
0, 0.5, 0� �0, 0, 0� �0, 0, �0.27�
0, 0.5, 0� �0, 0, 0� �0, 0, �0.27�
0.21, 0.06� �0, �0.1, 0.1� �0, �0.06, �0.06�
45.21 18.76 5.88
0.25, 0.00� �0, 0.00, 0.05� �0, �0.01, 0.12�
des
e jo

1.
1.
0
1

10.
21.
et

�0,
�0,

�
�

�0,

0, �
otential energies
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q. �26�. The total potential energy of the system remained con-
tant throughout the entire range of motion of the industrial ma-
ipulator, where the elastic potential energy function is a reflec-
ion of the gravitational potential energy function. As a result, the
ravity effect of the system is fully eliminated and a perfect grav-
ty balance of the system is accomplished.

Conclusion
In this paper, a methodology for the design of a gravity-

alanced general spatial serial-type manipulator is presented. The
tatic equilibrium of the system is derived based on the potential
nergy method. The overall gravitational potential energy of n
erially connected links is successfully formulated into n indepen-
ent subsystems. By generalization of the basic single-link equi-
ibrator, the equilibrium of each subsystem is achieved with the
uspension of a zero-free-length spring fitted between each pri-
ary link and its adjacent pseudobase link. Construction of the n

seudobase links is implemented by the use of the n consecutive
odules of spatial parallelogram RSSR linkages. The proposed

esign method outperforms others because only n springs are re-
uired, all springs are fitted locally, and the mobility of the origi-
al manipulator remains intact. Thus, the motion interference
mong the springs, the auxiliary links, and the manipulator is
inimized and, since the range of motion is not scarified, the

ravity-balanced manipulator is able to serve a more general spa-
ial motion in comparison with others. Verification of the method-
logy concerning the static equilibriums as well as kinematics is
ustified by the computer simulation of an example.
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