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A methodology is developed to determine the spring installation for the design of a statically
balanced planar articulated manipulator without parallel auxiliary links. The spring installation
is characterized by the connectivity of springs among links, the selection of spring constants,
and the locations of spring attachment points. The static equilibrium analysis of the spring-
loaded planar articulated manipulator is based on the energy approach, formulated by a
constant stiffness block matrix and its associated configuration block matrices. The stiffness
block matrix quantifies the resistance or assistance of a manipulator to the change of
configuration due to the gravitational forces and the elastic spring forces. Such a matrix
uniquely represents both the gravitational potential energy and the elastic potential energy of
springs of the system at any configuration. By solving the isotropic condition of the stiffness
block matrix, all design parameters of springs can be obtained for any given planar articulated
manipulator with prescribed dimensions and inertia. Exact solutions for the locations of
attachment points are given in detailed in the examples of a spring-loaded one-, two- and
three- degrees of freedom articulated manipulators.
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1. Introduction

Amechanism is said to be perfectly gravity-balanced if theweight of the links of themechanism does not produce any torque at
the kinematic pair under static conditions, for any configuration of the mechanism within its workspace [1]. Gravity-balanced
planarmanipulators can benefit from the increase of the power efficiency since no actuating force is required to sustain the system
payload. These manipulators have a wide range of applications on support apparatuses [2–15]. For example, a surgical tool can be
posed statically at any spontaneous posture by a gravity-balanced manipulator arm [8,16].

In the field of statically balanced mechanisms, a large number of designs of planar articulated manipulators are embedded with
parallel auxiliary links and elastic elements, e.g. springs [8–15,17–22]. Such springs produce an equal but opposite torque at each
revolute joint to that produced by the weight of manipulator links at any configuration to achieve the perfect balance. The parallel
auxiliary links provide the suitable locations of spring attachment points. The design approach is easy to apply for planar articulated
manipulators. However, the parallelogram structures of such designs have several disadvantages: (i) motion interferences between
the primary links and the auxiliary links may hinder the workspace of the manipulator; (ii) mechanical tolerances must be carefully
controlled to maintain the parallelism of auxiliary links; (iii) auxiliary links produce additional inertia to the system; and (iv) the
excess number of partsmay reduce the robustness of themanipulator.More importantly, besides the auxiliary linkmethod, a designer
has almost no foundation to determine the spring installation for a general planar articulated manipulator.

The nature of static balance of a system with springs is the energy exchanged equally between the gravitational potential
energy and the elastic potential energy. The gravitational forces, like spring forces, resist or assist the configuration change of a
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mechanism from an equilibrium configuration. In this paper, a generalized stiffness of mechanism based on the derivation of
potential energy is proposed. Such a generalized stiffness is formulated in a constant block matrix, referred to as a stiffness block
matrix, and is used for the analysis of static equilibrium. Traditionally, the stiffness matrix of a manipulator is derived from the
coordinate transformations between the actuator space and the end effecter space [23,24]. Such stiffness matrix is a relation
between the end effecter output forces and joint actuating torques, and it is configuration dependent [23,24]. The stiffness block
matrix of this paper is, however, configuration independent and constant for a mechanism with given dimensions and inertia.
Such quantity is physically close to the sense of the spring constant of Hooke's law.

In this paper, a methodology is developed to determine the spring installation for the design of statically balanced planar
articulated linkage without parallel auxiliary links. The spring installation is characterized by the connectivity of springs among
links, the selection of spring constants, and the locations of spring attachment points. The connectivity of springs among links is
referred to as the spring configuration. The spring configuration can be determined by the structure of a stiffness block matrix. The
locations of spring attachment points can be derived from the design equations directly obtained from the component matrices in
the stiffness block matrix. Since the configuration of mechanism is defined by each orientation of link, spring deformation is
associated with the rotational motions of links; manipulators containing prismatic joints are excluded from this study. In the final
part of this paper, exact solutions for the locations of attachment points are given with details in the examples of a spring-loaded
one-, two- and three- degree of freedom (DOF) articulated manipulators.

2. Stiffness block matrix representation of elastic potential energy

In amechanical system, a stiffnessmatrixK=[kij] is used to express the potential energyU of themechanical system displacing
from an equilibrium position, by means of the following equation:
where
vector
U=
1
2
Q

T
KQ ð1Þ

most often,Q is thematrix representation of a vector whose components are the generalized coordinates of the system, e.g.
where
Q=[θ1, θ2,…, θn] for θi as the joint angle of joint i.

Eq. (1) is widely used to analyze the equilibriums for some mechanical systems with joint compliances behaving like torsion
springs. However, mechanisms with linear spring installation are sometimes difficult to apply by the inability to preserve the
bilinearity of the formulation. Hence, if quantity θi describes the angular displacement of a moving link with respect to a fixed link
in a planar linkage, a unit vector θi can be defined as
θi = Cθið Þe1 + Sθið Þe2 ð2Þ

abbreviations Cθ and Sθ are denoted for cos(θ) and sin(θ), respectively, throughout the paper for the conciseness, and e1 and
where
e2 are the orthonormal vectors spanning a Cartesian plane XY, namely the working plane of the planar linkage.

For a rigid body i, vector θi is an arbitrary unit vectorfixed on the rigid body. Angle θi can be specificallymeasured counterclockwise
from the positive X-axis of an inertia frame to the positive direction of the unit vector. The matrix representation of vector θi is
Qi= Cθi Sθi½ �T ð3Þ
ByEq. (3), the orientation of the rigid body i onplane XY can be expressed uniquely. For a vector r of length rfixed to the same rigid
body i, thematrix representationR for vector r can be obtained by pre-multiplyingQ iwith a constant transformationmatrixT:
Tðr;φÞ = rCφ �r Sφ
rSφ r Cφ

� �
ð4Þ

φ is the relative angle, measured counterclockwise, between vector r and the unit vector θi and angle φ is constant at any
where
configuration of the rigid body i.

Consider a zero-free-length spring with labeled number z, spring constant kz and its two ends attached arbitrarily to links x and
y of a serial kinematic chain as illustrated in Fig. 1, where link x is closer to the ground than link y. An ideal zero-free-length spring
can be made up with a pre-tensioned, normal spring and possibly with cables and pulleys [19–21]. The vectors of interest in Fig. 1
are az, bz and ri, and they can be respectively represented by matrices Az, Bz and Ri as
Az = T az;αzð ÞQx ð5aÞ

Bz = T bz;βzð ÞQy ð5bÞ

Ri = T ri;φið ÞQi ð5cÞ

matrices Az and Bz contain the positioning parameters of the spring attachment points on links x and y, respectively, and
ri is fixed on link i and pointing from one center of revolute joint to the other.



Fig. 1. A spring z attached to links x and y.
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For consistency throughout this paper, capital boldface, lowercase boldface and lowercase italic characters are used for
matrices, vectors and scalars, respectively.

The elastic potential energy zUof spring z canbe obtainedby the spring constant times the square of the springdeformation as
where

and

where
zU =
1
2
kz j ∑

y−1

i=x+1
ri + bz�az j2 =

1
2
kz ∑

y−1

i=x+1
R

T
i + B

T
z�A

T
z

 !
∑
y−1

i=x+1
Ri + Bz�Az

 !
ð6Þ
By substituting Eqs. (5a)–(5c) into Eq. (6), a bilinear form can be obtained as
zU =
1
2

∑
y

i;j=x
Q

T
i

z
Eij ÞQj

�
ð7Þ

matrix zEij with indices i≠ j is

z
Eij =

−kzA
T
zBz = −kzT

T az;αzð ÞT bz;βzð Þ i = x; j = y

−kzA
T
zRi = −kzT

T az;αzð ÞT ri ;φið Þ i = x; j = x + 1ð Þ; ⋯; y−1ð Þ
kzR

T
i Bz = kzT

T ri;φið ÞT bz;βzð Þ i = x + 1ð Þ; ⋯; y−1ð Þ; j = y

kzR
T
i Rj = kzT

T ri;φið ÞT rj;φj

� �
i; j≠x; y; j > i

8>>>>>><
>>>>>>:

ð8Þ

z
Eji =

z
Eji

T ð9Þ
For matrix zEij with indices i= j,
z
Eii =

kzA
T
zAz = kza

2
z I; i = x

kzR
T
i Ri = kzr

2
i I; i = x + 1; ⋯; y−1

kzB
T
zBz = kzb

2
z I; i = y

8>><
>>: ð10Þ

I is the 2×2 identity matrix.
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Hence, a block matrix form of Eq. (7) can be expressed as
zU =
1
2

Qx
Qx + 1

⋮
Qy−1
Qy

2
66664

3
77775

T

z
Exx

z
Ex x + 1ð Þ ⋯ z

Ex y−1ð Þ
z
Exy

z
E

T
x x + 1ð Þ

z
E x + 1ð Þ x + 1ð Þ

z
E x + 1ð Þy

⋮ ⋱ ⋮
z
E

T
x y−1ð Þ

z
E y−1ð Þ y−1ð Þ

z
E y−1ð Þy

z
E

T
xy

z
E

T
x + 1ð Þy ⋯ z

E
T
y−1ð Þy

z
Eyy

2
6666666664

3
7777777775

Qx
Qx + 1

⋮
Qy−1
Qy

2
66664

3
77775 ð11Þ
Eq. (11) can be rewritten in a block matrix form as
zU =
1
2

Qi½ �T z
Kij

h i
Qi½ � = =

1
2
QT zK
� �

Q ð12Þ

[zKij] is a 2n×2n blockmatrix and is denoted as zK, [Qi] is a 2n×1 blockmatrix and is denoted asQ=[Q1,Q2,…,Qn]T, while
where
zKij is a 2×2 component matrix, for i, j=1, 2,…, n, as
z
Kij =

z
Eij for i; j = x; ðx + 1Þ;:::; y
0 else

�
ð13Þ
Block matrix zK is referred to as the stiffness block matrix of spring z. The stiffness block matrix has n×n stiffness components
zKij's, and 2n×2n entries. For spring z is attached to links x and y, the stiffness block matrix has (y−x+1)×(y−x+1) non-zero
elastic components Eij's. Denote the installation configuration of the spring z as z(x, y). The resultant stiffness block matrix for
spring z(x, y) is constant and uniquely determined by parameters kz, az, αz, bz and βz. The associated blockmatrix Q is referred to as
the configuration block matrix of a planar manipulator. The configuration block matrix has n×1matrix componentsQi's, and 2n×1
scalar components. The configuration block matrix is a geometrical measure of configuration change by the relative angular
displacement between any two links, including the moving links and the fixed link, in a planar linkage. Each configuration has a
unique configuration block matrix by the given angular displacement θi of each articulated joint i. Elastic potential energy by
spring z for each configuration can be determined according to Eq. (12).

3. Stiffness block matrix representation of gravitational potential energy

Gravitational potential energy of a mechanism varies alongwith the configuration change of themechanism. Consequently, the
gravitational force behaves physically as the spring force resisting or assisting the configuration change of the mechanism from an
equilibrium configuration. Hence, an intuitive idea is motivated to formulate the gravitational potential energy in the matched
form as that of Eq. (12). Due to the same reason that the bilinear form by the conventional basis Q=[θ1, θ2,…, θn] is difficult to be
obtained, configuration block matrix Q is employed.

As illustrated in Fig. 2, the mass center position vector px of link x in a planar linkage can be obtained along a path passing all
centers of pre-connected revolute joints. The path starts from an origin of a fixed frame on the ground link, passes through each
link i, and then ends on link x. Thus, the mass center position vector px can be represented by matrix Px as
Px = ∑
x−1

i=1
T ri;φið ÞQi + T sx;σ xð ÞQx ð14Þ

T(sx, σx)Qx represents the vector pointing from the center of joint connecting links (x−1) and x to the mass center of link x,
where
as shown in Fig. 2.

The gravitational potential energy of link x can be obtained by
gUx = −mxG
T
Px ð15Þ

G is a 2×1 column matrix representing the gravitational acceleration vector g of magnitude g, and is fixed to ground (link 1),
where
hence,
G = gC θ1 + γð Þ gS θ1 + γð Þ½ �T = T g;γð ÞQ1 ð16Þ
The total gravitational potential energy is the sum of Eq. (15) on index x as
gU = −G
T ∑

x
mxPxð Þ ð17Þ



Fig. 2. The mass center position vector of link x.
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According to Eq. (14), the sum of mxRx for an n-link manipulator, x=1, 2, …, n, can be obtained as
where

where
∑
n

i=1
miPi = ∑

n

i=1
miT si;σ ið Þ + ∑

n

j= i+1
mj

 !
T ri;φið Þ

" #
Qi ð18Þ
Substituting Eqs. (16) and (18) into Eq. (17) yields
gU = ∑
n

i=1
Q

T
1DiQi ð19Þ

Di = −T
T g;γð Þ miT si;σ ið Þ + ∑

n

j= i+1
mj

 !
T ri;φið Þ

" #
ð20Þ
Matrix Di is a 2×2 matrix
Di =
−di;1 di;2
−di;2 −di;1

� �
ð21Þ

di;1 = migsiC σ i−γð Þ + ∑
n

j= i+1
mj

 !
griC φi−γð Þ ð22aÞ

di;2 = migsiS σ i−γð Þ + ∑
n

j= i+1
mj

 !
griS φi−γð Þ ð22bÞ
Since (QT
1Di Qi ) is a scalar, it equals to its transpose (QT

i DT
i Q1). The bilinear form of Eq. (19) can be expressed to a block

matrix form as
gU =
1
2

Q1
Q2
⋮
⋮
Qn

2
66664

3
77775

T
2D1 D2 D3 ⋯ Dn

D
T
2 0 ⋯ ⋯ 0

D
T
3 0 ⋮
⋮ ⋱ 0

D
T
n 0 ⋯ ⋯ 0

2
66666664

3
77777775

Q1
Q2
⋮
⋮
Qn

2
66664

3
77775 ð23Þ
Hence, the stiffness block matrix gK by the gravitational effects can be obtained as
gU =
1
2

Qi½ �T g
Kij

h i
Qi½ � = 1

2
QT gK
� �

Q ð24Þ

image of Fig.�2


where

where
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each component matrix gKij of the 2n×2n gK block matrix is

g
Kij =

2D1 i = 1; j = 1

Dj i = 1; j = 2;3; :::;n

D
T
i j = 1; i = 2;3; :::;n

0 else

8>>>>><
>>>>>:

ð25Þ
Matrix Di is referred to as a gravitational component in the stiffness block matrix. According to Eqs. (21), (22a) and (22b), a
gravitational component Di contains the dimensional and inertia parameters of the given planar manipulator. These parameters
affect the gravitational forces or moments acting on the planar manipulator. A given manipulator has a constant and unique
stiffness block matrix gK that characterize the effects of gravity at different configurations.

4. Stiffness block matrix under force isotropy condition

Assume that several springs are attached to a planar n-link manipulator to achieve a perfect gravity balance. The total potential
energy can be expressed by the use of Eqs. (12) and (24) as
U = gU + ∑
z

zU =
1
2
QTKQ ð26Þ

the overall stiffness block matrix K is

K = Kij

h i
= g

Kij

h i
+ ∑

z

z
Kij

h i
ð27Þ

ji=Kij
T.
and K

Substituting Eq. (27) with Eqs. (13) and (25) yields
Kij =

2D1 + ∑
z

z
E11 i = 1; j = 1

Dj + ∑
z

z
Eij i = 1; j = 2;3; :::;n

D
T
i + ∑

z

z
E

T
ji j = 1; i = 2;3; :::; n

∑
z

z
Eij else

8>>>>>>>>><
>>>>>>>>>:

ð28Þ
Each non-zero component matrixKij can be considered as a pseudo stiffness component embedded between links i and j. Change of
the relative angular displacement θij=cos−1(Qi

T Qj) between links i and j induces a variation of potential energy (Qi
T KijQj/2) to the

system. Therefore, for a statically balanced system, all stiffness components between any two distinct links should be zeros, i.e., any off-
diagonal component matrix Kij for i≠ j in K is a zero matrix as
Dj + ∑
z

z
E1j = 0 j = 2;3; :::;n ð29aÞ

∑
z

z
Eij = 0 i≠1; j≠1 ð29bÞ
By the use of Eqs. (29a) and (29b), Eq. (26) becomes constant, configuration independent and equals to
U =
1
2
trKð Þ ð30Þ
According to the principle of static equilibrium [1], when the total potential energy is invariant with respect to the
configuration change of the attached links, the static equilibrium is achieved at any configuration of a mechanism.

Based on Eqs. (26) and (30), it is obvious thatQTKQ=tr(K). ForK is a diagonal blockmatrix, there exists a square rootmatrix
S such that K=ST S. Thus, QTK Q=QT ST S Q. Let X=S Q represent a vector of an n-dimensional space. Hence, it can be
obtained that XTX=tr(K). In particular for a 3-D space, it plots an isotropic sphere of radius [tr(K)]1/2. Hence, the condition of
Eqs. (29a) and (29b) is referred to as an isotropic condition for stiffness block matrix, i.e., the balancing condition.

It is also seen that, the isotropymay be contributed by the gravity-to-spring balancing as described in Eq. (29a), and the spring-
to-spring balancing [23] as depicted in Eq. (29b). Eq. (29a) involves both the gravitational and the elastic components, while
Eq. (29b) concerns only the elastic components. While gravity-to-spring balancing refers to the energy exchange between the
gravitational potential energy and the elastic potential energy, spring-to-spring balancing refers to that between the elastic
potential energies. Traditionally, gravity-balanced mechanisms with complex spring installations are sometimes difficult to
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identify the contribution of a single spring. With the block matrix formulation, analysis can be made more efficiently by knowing
the exact parameters involved in each entry of the block matrix.

By Eqs. (10), (22a) and (22b), Eq. (30) can be expressed to scalar parameters as
where

where

and
U = −m1gs1C σ1−γð Þ− ∑
n

i=2
mi

	 

gr1C φ1−γð Þ + ∑

N

z=1
∑
i

1
2

zci
� � ð31Þ

zci =
kza

2
z ; i = x

kzr
2
i ; i = x + 1; x + 2; ⋯; y−1

kzb
2
z ; i = y

8><
>: ð32Þ

is the number of springs.
and N
Eq. (31) is referred to as the pre-tensile energy in the planar manipulator. As long as each link is a rigid body, the pre-tensile

energy is constant. Since the pre-tensile energy results in internal forces of a mechanism, it is should be kept as small as possible.
According to the Lagrange mechanics, the virtual work δU of an (n−1)-DOF system due to generalized forces τj's with

respective displacements δθj's can be expressed as
δU = ∑
n−1

j=1
τjδθj ð33Þ
To be more specifically, quantity θj represents the angular displacement of an articulated joint j, for j=1, 2,…, (n−1), and
generalized force τj represents the joint torque of articulated joint j.

According to Eq. (26), the derived potential energy of the n-link, (n−1)-DOF manipulator is described in an abstract (n−1)-
dimensional space constituted of the (n−1) independent vectors θi's. In addition to the isotropic conditions, Eq. (26) can be
written as
U =
1
2
∑
n

i=2
Q

T
i KiiQi ð34Þ
Since Kii for i=2, 3,…, n is a 2×2 diagonal matrix, i.e. Kii=kiiI. Hence, by Eq. (34),
δU =
1
2
∑
n

i=2
kiiδ Q

T
i Qi

� �
ð35Þ
Since,
δ Q
T
i Qi

� �
= ∑

n−1

j=1
2QT

i
∂Qi

∂θj
δθj ð36Þ
Substituting Eq. (36) in Eq. (35) yields
δU = ∑
n−1

j=1
∑
n

i=2
kiiQ

T
i
∂Qi

∂θj

 !
δθj ð37Þ
Comparing Eq. (37) with Eq. (33), the joint torque of articulated joint j can be obtained as
τj = ∑
n

i=2
kiiQ

T
i
∂Qi

∂θj
ð38Þ

∂Qi

∂θj
=

0 for i≠j
−Sθj Cθj
� �T for i= j

�
ð39Þ

Q
T
i
∂Qi

∂θj
= 0 ð40Þ
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Substituting Eq. (38) with Eq. (40) yields τj=0, the isotropic condition results in a zero joint torque for each joint j.
Furthermore, a force component can be observed from Eq. (38) as
where

where
F
T
i = kiiQ

T
i ð41Þ
For i=2, 3,…, n, a force block matrix F=[F2, F3,…,Fn]T can be defined. Under the isotropic conditions, Eq. (41) can be
generalized to
F = KQ ð42Þ
According to Eq. (38), the force block matrix can also be obtained by a linear transformation by the Jacobian block matrix
J = ∂Qi = ∂θj

� �
as τ= JT F where τ=[τj]. Hence, by defining a constant diagonal matrix as D=KTK and based on Eq. (42), it

yields
FTF = QTD Q = tr Dð Þ ð43Þ
Hence, it is concluded that the force component is also isotropic in an (n−1)-dimensional space. Note that, although vectors
θi's are physically lying on a plane, a mathematical interpretation of an (n−1)-dimensional space can be developed by the
independent scalars θi's.

Due to the success to integrate the formulation of gravitational potential energy with the elastic potential energy, design
parameters for spring installation can be obtained from the overall stiffness block matrix. Statically balancing conditions can be
achieved bymaintaining the stiffness blockmatrix isotropic. The stiffness blockmatrix can also be used to examine the equilibrium
for planar manipulators with linear spring installations. Note that, the stiffness block matrix is a constant if and only if the
dimensional parameters of the mechanism are invariant, i.e. the distance between the centers of revolute joints must be constant.
Hence, planar manipulators with only revolute joints are considered in this paper.

5. Locations of spring attachment points

In this section, one spring installation configuration is found for the balancing of a single pendulum, and two spring installation
configurations are demonstrated for a double pendulum. The exact solutions for design parameters of all demonstrated spring
configurations are obtained.

5.1. Spring installation for a single pendulum (n=2)

Consider the stiffness block matrix gK of a single pendulum,
gK =
2D1 D2

D
T
2 0

" #
ð44Þ

the off-diagonal component of interest is

D2 = −m2gs2C σ2−γð Þ m2gs2S σ2−γð Þ
−m2gs2S σ2−γð Þ −m2gs2C σ2−γð Þ
� �

ð45Þ
Since D2 is the (1, 2)th component of the stiffness block matrix, a spring 1(1, 2) fitted between link 1 (ground) and link 2 is
employed. The stiffness block matrix of Eq. (44) is then modified as
K =
2D1 + 1

E11 D2 + 1
E12

D
T
2 + 1

E
T
12

1
E22

" #
ð46Þ

, according to Eq. (8), elastic component 1E12 is

1
E12 = −k1a1b1C β1−α1ð Þ k1a1b1S β1−α1ð Þ

−k1a1b1S β1−α1ð Þ −k1a1b1C β1−α1ð Þ
� �

ð47Þ
According to Eq. (29a), letting matrix [D2+1E12] be a zero matrix yields two effective design equations as
k1a1b1C β1−α1ð Þ + m2gs2C σ2−γð Þ = 0 ð48aÞ

k1a1b1S β1−α1ð Þ + m2gs2S σ2−γð Þ = 0 ð48bÞ



Fig. 3. A gravity-balanced one-DOF manipulator.

1885P.-Y. Lin et al. / Mechanism and Machine Theory 45 (2010) 1877–1891
Summing the squared Eqs. (48a) and (48b) yields
and
k1a1b1 = m2gs2 ð49aÞ
Dividing of Eq. (48a) by Eq. (48b) yields
β1−α1 = σ2−γ F π ð49bÞ
Eq. (49a) is the well-known design equation for the spring balancing of single pendulum [1,19,20,25,26], where spring
parameters k1, a1, b1, α1 and β1 can be determined. The spring installation of a single pendulum is illustrated in Fig. 3.

5.2. Spring installation for a double pendulum (n=3)

5.2.1. Spring configurations for a double pendulum (n=3)
Consider stiffness block matrix gK of a double pendulum,
gK =
2D1 D2 D3

0 0
0

2
4

3
5 ð50Þ
Since all matrix components on the lower triangle of a stiffness blockmatrix are the transpose of the ones on the upper triangle,
they are henceforth blanked for conciseness. In order to eliminate the component D3 on the (1, 3)th entry, a spring 1(1, 3) is
installed. The stiffness block matrix becomes
gK + 1ð1;3ÞK =
2D1 + 1

E11 D2 + 1
E12 D3 + 1

E13
1
E22

1
E23

1
E33

2
64

3
75 ð51Þ
Observed from Eq. (51), since the elastic component 1E23 is a non-zero matrix with non-zero parameters k1 and b1, a second
spring is required for all off-diagonal components to be zero. In this case, the spring-to-spring balancing is applied. The two
possible configurations for spring 2 are 2(2, 3) and 2(1, 3). Note that, spring 2 with configuration (1, 2) is unable to balance
component 1E23 on entry (2, 3). Corresponding stiffness block matrices, KI and KII, of the two possible configurations are
expressed, respectively, as
KI =
gK + 1ð1;3ÞK + 2ð2;3ÞK =

2D1 + 1
E11 D2 + 1

E12 D3 + 1
E13

1
E22 + 2

E22
1
E23 + 2

E23
1
E33 + 2

E33

2
64

3
75 ð52Þ

KII =
gK + 1ð1;3ÞK + 2ð1;3ÞK =

2D1 + 1
E11 + 2

E11 D2 + 1
E12 + 2

E12 D3 + 1
E13 + 2

E13
1
E22 + 2

E22
1
E23 + 2

E23
1
E33 + 2

E33

2
64

3
75 ð53Þ
Illustrative figures for configurations I and II are shown in Fig. 4(a) and (b), respectively. Both configurations can result in a
same installation with one end of spring 2 attached to the center of the ground pivot. The spring installation with such an extreme
location of spring attachment points has been proposed and investigated [27].

image of Fig.�3
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5.2.2. Configuration I: a mono-articular spring and a bi-articular spring
Consider the spring configuration in Fig. 4(a) where springs 1(1, 3) and 2(2, 3) are referred to as a bi-articular spring and a

mono-articular spring, respectively. The “articular” is termed according to the number of articulated joints a spring is spanned
over.

By letting the three off-diagonal components, K13, K12 and K23, of KI be zero matrices, six design equations can be obtained
as
k1a1b1C β1−α1ð Þ + d3;1 = 0 ð54aÞ

k1a1b1S β1−α1ð Þ + d3;2 = 0 ð54bÞ

k1a1r2C φ1−α1ð Þ + d2;1 = 0 ð54cÞ

k1a1r2S φ1−α1ð Þ + d2;2 = 0 ð54dÞ

−k1r2b1C β1−φ2ð Þ + k2a2b2C β2−α2ð Þ = 0 ð54eÞ

−k1r2b1S β1−φ2ð Þ + k2a2b2S β2−α2ð Þ = 0 ð54fÞ
Let spring parameters k1, k2 be given parameters. Length a1 can be first determined by the sum of squares of Eqs. (54c) and
(54d) and angle α1 can be obtained by the inverse tangent function by dividing Eq. (54d) with Eq. (54c) as
a1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d22;1 + d22;2

q
k1r2

ð55aÞ

α1 = φ1−tan−1 d2;2 = d2;1
� �

ð55bÞ
Once parameters a1 and α1 are determined, parameters b1 and β1 can be obtained by Eqs. (54a) and (54b) as
b1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d23;1 + d23;2

q
k1a1

ð56aÞ

β1 = α1 + tan−1 d3;2 = d3;1
� �

ð56bÞ
Finally, with Eqs. (54e) and (54f),
a2b2 =
k1r2b1
k2

ð57aÞ

β2−α2 = β1−φ2 ð57bÞ
Fig. 4. The spring installation of a double pendulum with (a) a mono-articular spring and a bi-articular spring; and (b) two bi-articular springs.
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Fig. 5. A statically balanced three-DOF manipulator.
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The parameters a2, b2, α2 and β2 on the left-hand sides of Eq. (57) can be determined.

5.2.3. Configuration II: two bi-articular springs
Consider the spring configuration in Fig. 4(b) with two bi-articular springs. By letting the three off-diagonal components, K13,

K12 and K23, of KII be zero matrices, six design equations can be obtained as
Table 1
Dimens

Link i

2
3
4
φi=σ
k1a1b1C β1−α1ð Þ + k2a2b2C β2−α2ð Þ + d3;1 = 0 ð58aÞ

k1a1b1S β1−α1ð Þ + k2a2b2S β2−α2ð Þ + d3;2 = 0 ð58bÞ

k1a1r2C φ1−α1ð Þ + k2a2r2C φ2−α2ð Þ + d2;1 = 0 ð58cÞ

k1a1r2S φ1−α1ð Þ + k2a2r2S φ2−α2ð Þ + d2;2 = 0 ð58dÞ

k1r2b1C β1−φ2ð Þ + k2r2b2C β2−φ2ð Þ = 0 ð58eÞ

k1r2b1S β1−φ2ð Þ + k2r2b2S β2−φ2ð Þ = 0 ð58fÞ
Let spring parameters k1, k2, a2 and α2 be given parameters. Summing the squared Eqs. (58c) and (58d) yields
k1a1r2ð Þ2 = k2a2r2C φ2−α2ð Þ + d2;1
h i2

+ k2a2r2S φ2−α2ð Þ + d2;2
h i2 ð59Þ
Length a1 can befirst determined by the given parameters on the right-hand side of Eq. (59). Substituting parameter a1 in Eqs. (58c)
and (58d) yields angle α1. Then, summing the squared Eqs. (58e) and (58f) yields the relations for parameters b1, b2, β1 and β2
k2b2 = k1b1 ð60aÞ
ional and inertia parameters of the three-DOF manipulator (data given in kg, m).

mi si ri

4.55 .127 .127
11.42 .378 .757
42.60 .140

i=γ=0
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where

where

Table 2
Spring design parameters of the three-DOF manipulator (data given in N/m, m, degree).

Spring i ki ai αi bi βi

1 1000 .491 180 .119 0
2 600 .127 180 .198 180
3 8000 .010 180 .151 180

Fig. 6. A simulation model of the three-DOF manipulator.
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β2 = β1 F π ð60bÞ
Using Eqs. (60a) and (60b) and replacing parameters b2 and β2 in Eqs. (58a) and (58b) with parameters b1 and β1 yield
k1a1b1C β1−α1ð Þ−k1a2b1C β1−α2ð Þ + d3;1 = 0 ð61aÞ

k1a1b1S β1−α1ð Þ−k1a2b1S β1−α2ð Þ + d3;2 = 0 ð61bÞ
Applying the sum and difference formulas for the sine and cosine functions in Eqs. (61a) and (61b) yields
A11 b1Cβ1ð Þ + A12 b1Sβ1ð Þ = −d3;1 ð62aÞ

A21 b1Cβ1ð Þ + A22 b1Sβ1ð Þ = −d3;2 ð62bÞ

A11 = A22 = k1 a1Cα1−a2Cα2ð Þ ð63aÞ

A12 = −A21 = k1 a1Sα1−a2Sα2ð Þ ð63bÞ
Since coefficients A11, A12, A21 and A22 are constituted of determined parameters, Eqs. (62a) and (62b) can be solved by the
Cramer's rule as
b1Cβ1 =
Δ1

Δ
ð64aÞ

b1Sβ1 =
Δ2

Δ
ð64bÞ

Δ = jA11 A12
A21 A22

j ð65aÞ

Δ1 = j−d3;1 A12
−d3;2 A22

j ð65bÞ

Δ2 = jA11 −d3;1
A21 −d3;2 j ð65cÞ
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Fig. 7. The input torques of the three-DOF manipulator before and after static balance.
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Length b1 can be derived by summing the squared Eqs. (64a) and (64b), and angle b1 can be obtained by the inverse tangent
function from dividing Eq. (64b) with Eq. (64a) as
b1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

1 + Δ2
2

q
Δ

ð66aÞ

β1 = tan−1 Δ2 =Δ1ð Þ ð66bÞ
Parameters b2 and β2 can be solved by Eqs. (58a) and (58b) with the substitutions of determined parameters.
In the current studies of the auxiliary link method, two general arrangements of the auxiliary links were proposed; one is

familiar as a structure of serially connected parallelogram linkages wherein each parallelogram is installed with a single spring
[18,19]; the other one uses the parallel auxiliary links to identify the overall mass center position of themechanism, and one of the
installed springs must be fitted between the base and the mass center [28,29], this arrangement may require a larger operating
space for the spring pending on the position of themasse center. In comparison to both arrangements, the designwithout auxiliary
links in the paper can disregard the motion interferences between the auxiliary links and the primary links, and avoid any of the
singularity problems which may occur, and thus, simplify the design process. However, using the multi-articular springs though
may force these springs traversing a potentially large workspace. By selecting springs with appropriate stiffness, it may yield a
design with spring attachment points close to the rotation centers of articular joint, i.e. short lengths aj and bj. Consequently, the
operating space of the multi-articular springs can be minified.

6. An isotropic three-DOF articulated manipulator

The design example demonstrated in this section is a three-DOF (n=4) articulated manipulator. A stiffness block matrix K
with 4×4 component matrices and six off-diagonal components on its upper triangle is considered. A total number of 2×6 design
equations can be derived. Since a spring z can provide four design parameters, namely az, αz, bz and βz, to the design equations,
three installed springs provide with a total number of twelve design parameters. For links 1, 2, 3 and 4 of the manipulator, springs
1, 2 and 3 are installed with unrepeated spring configurations 1(1, 4), 2(2, 4) and 3(1, 3), respectively. Apply the sum and
difference formulas for the sine and cosine functions to the twelve design equations, and define twelve auxiliary variables Xi ’s for
i=1, 2, …, 12 as
X1 = a1C α1ð Þ;X2 = a1S α1ð Þ;X3 = b1C β1ð Þ;X4 = b1S β1ð Þ;
X5 = a2C α2ð Þ;X6 = a2S α2ð Þ;X7 = b2C β2ð Þ;X8 = b2S β2ð Þ;
X9 = a3C α3ð Þ;X10 = a3S α3ð Þ;X11 = b3C β3ð Þ;X12 = b3S β3ð Þ

ð67Þ
The twelve design equations can be represented by
fj X1;X2; ⋯;X12ð Þ = 0 j = 1;2; :::; 12 ð68Þ
For a given three-DOF articulated manipulator as shown in Fig. 5, the inertia and dimensional parameters of the manipulator
are listed in Table 1. In addition to the arbitrarily selected k1, k2 and k3, the numerical solutions of Xi's in Eq. (68) can be simply
solved with the “NSolve” function in software Mathematica. The resultant design parameters are tabulated in Table 2. The exact
solutions of Eq. (68) are described in details in Appendix A, and they are consistent with the numerical solutions.

A simulation model is built in ADAMS as shown in Fig. 6. The gravitational potential energy and the elastic potential energy are
plotted in Fig. 6 by an arbitrarily given task of the manipulator. The total potential energy remains constant at any configuration.
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The static force on the end effecter is zero in all directions on the working plane. Fig. 7 illustrates the comparison of the static input
torques with and without springs, where the dashed and solid curves respectively represent the input torques of joints 1, 2 and 3,
i.e. τ1, τ2 and τ3, before and after statically balancing. It is observed that, all input torques are greatly reduced since large gravity
forces are counterbalanced, and the representative curves are all very close to the zero line in Fig. 7.

6. Conclusions

In this study, a methodology is developed to determine the spring installation for the design of a statically balanced planar
articulated manipulator without parallel auxiliary links. In comparison to the auxiliary link method, the design without auxiliary
links in the paper can disregard the motion interferences between the auxiliary links and the primary links, and avoid any of the
singularity problems which may occur, and thus, simplify the design process. The methodology proposed in this paper can be
generally applied for planar articulated manipulators and hence provide an alternative, and also attractive, design approach. Two
major matrices are proposed, namely the configuration block matrix and the stiffness block matrix. By the stiffness block matrix
representation, spring configurations can be determined through the placements of elastic and gravitational components in the
block matrix. An isotropic stiffness block matrix provides the design equations for the determination of spring attachment points.
Exact solutions of the design equations are given with details in the examples of a spring-loaded one-, two- and three-DOF
articulated manipulators, in which, the spring installation of the three-DOF gravity-balanced manipulator is novel. Simulation
results showed that the static equilibrium is achieved at any reachable region of the manipulators.

Appendix A

The twelve design equations of Eq. (68) can be written as
k1a1b1f β1−α1ð Þ + d4; fð Þ = 0 ðA:1Þ

k1a1r3f φ3−α1ð Þ + k3a3b3f β3−α3ð Þ + d3; fð Þ = 0 ðA:2Þ

k1a1r2f φ2−α1ð Þ + k3a3r2f ϕ2−α3ð Þ + d2; fð Þ = 0 ðA:3Þ

−k1r2b1f β1−φ2ð Þ + k2a2b2f β2−α2ð Þ = 0 ðA:4Þ

−k1r2r3f φ3−φ2ð Þ + k2a2r3f φ3−α2ð Þ−k3r2b3f β3−ϕ2ð Þ = 0 ðA:5Þ

k1r3b1f β1−φ3ð Þ + k2r3b2f β2−φ3ð Þ = 0 ðA:6Þ

f(*) represents C(*) or S(*), and correspondingly di,(f) is di,1 (or di,2) when f represents a cosine (or a sine) function.
where
Eq. (A.4) yields
k1r2b1 = k2a2b2 ðA:7Þ

β1−φ2 = β2−α2 ðA:8Þ
Eq. (A.6) yields
k1r3b1 = k2r3b2 ðA:9Þ

β1−φ3 = β2−φ3 F π ðA:10Þ
Dividing Eq. (A.7) with Eq. (A.9) yields
a2 = r2 ðA:11Þ
Subtracting Eq. (A.10) from Eq. (A.8) gives
α2 = φ2 F π ðA:12Þ
Substituting Eqs. (A.11) and (A.12) into Eq. (A.5) yields
k1 + k2ð Þr2r3f φ3−φ2ð Þ + k3r2b3f β3−φ2ð Þ = 0 ðA:13Þ
Hence, parameters b3 and β3 can be determined as
b3 = k1 + k2ð Þr3 = k3 ðA:14Þ
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β3 = ϕ3 F π ðA:15Þ
Let Y1=a1C(α1), Y2=a1S(α1), Y3=a3C(α3) and Y4=a3S(α3). Applying the sum and difference formulas for the sine and cosine
functions in Eqs. (A.2) and (A.3) yields a linear system with four equations as
∑
4

i=1
AijYi = Bj; j = 1;2;3;4 ðA:16Þ

Aij and Bj are constituted of determined parameters.
where
With the Cramer's rule, auxiliary variables Y1, Y2, Y3 and Y4 can be solved. Parameters a1, α1, a3 and α3 can be also determined

accordingly. Finally, with Eq. (A.1), parameters b1 and β1 can solved as
b1 =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d24;1 + d24;2

q
k1a1

ðA:17Þ

β1 = α1 + tan−1 d4;2 = d4;1
� �

ðA:18Þ
Substitute Eqs. (A.17) and (A.18) into Eqs. (A.9) and (A.10), respectively. Parameters b2 and β2 can be obtained.
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