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a b s t r a c t

The influence on coupling vibrations among shaft-torsion and blade-bending coupling vibrations of a multi-disk

rotor system was investigated analytically. The natural frequencies and the mode shapes of the system were

solved for one- to three-disk cases as examples. First, numerical results showed how the natural frequencies

varied with blades in a disk unit. The diagrams of the coupling mode shapes were drawn. From the results, it was

found that the inter-blade (BB) modes were of repeated frequencies of (Nb-1) multiplicity for number blades. At

multi-disk unit, the shaft–blade (SB) modes added to Nd modes for number disks. The BB modes were of

repeated frequencies of [Nd� (Nb–1)] multiplicity for number disks. Numerical calculations also revealed that

the natural frequencies were affected by disk distance. In the rotation effect, the times of instability will due to

the number of disk. And, the more disk rotor causes instability earlier than the less disk case.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The rotor systems composed of shaft, disk, and blades have been
extensively implemented in the industry. The demands for higher
operational speeds require more precise tuning than usual. The
dynamics of rotor systems have been studied for several decades.

Investigations were confined to analyses of individual compo-
nents, such as blade, Bauer [1] practiced the assumed modes method
to investigate the vibrational behavior of a beam rotating with a
constant spin about its longitudinal axis. Kammer and Schlack [2,3]
utilized the perturbation method to study dynamic characteristics
and stability of a rotating Euler beam. In last decades [4–9], many
authors have reported new formulations and techniques for the
rotating blade. On the other hand, about disks, Shen [10] further
employed Rayleigh dissipation function and Lagrange’s equation to
solve for the forced responses of a rotating disk system. Shen and Ku
[11] applied Lagrange’s equations and linearized equation of motion
to explore the multiple disk system, and found the frequencies of the
unbalanced modes were lower than those of disk’s one-nodal-
diameter modes. Lately, Khorasany and Hutton [12] explored
dynamic characteristics and stability of a constraining spinning disk.

Combined systems, like the shaft–disks, Nevzat [13] adopted
analytical method to explore the shaft–disk system. He found critical
speeds of the 1st and 2nd modes, and verified those with experiments.
Wu and Flowers [14] adopted the transfer matrix method to solve for
the natural frequency and critical rotational speed of multiple disks.

In the disk–blades unit, Chun and Lee [15] used the assumed
modes method to analyze the effects of disk flexibility on the
ll rights reserved.

: +886 2 23692178.
vibrational modes of a flexible disk–blade rotor system. They
obtained more efficiency and correct results, compared to finite
element method. Omprakash and Ramamurti [16] applied Love and
Kichhoff method to study the effects on the natural frequency due
to the blade stagger angle and twist angle in a disk–blades system.

Some studies have addressed the dynamic influence onto the
coupled vibrations of a shaft–disk–blade unit. Lesaffre et al. [17]
used the energetic method to explore the dynamic stability of a
flexible bladed rotor in the rotating frame. The authors found and
highlighted an unstable phenomenon near the stator critical speed
even in case of frictionless sliding. Huang and Ho [18] utilized the
concept of structure synthesis for a shaft–disk–blade system. The
system was divided into two subsystems, the shaft–disk and
blades. The disk was assumed to be rigid and can transmit the
motion between a shaft and blades. The results showed that there
existed not only the shaft–blade coupled modes but also the inter-
blades coupling modes. Yang and Huang [19–21] explored the disk
flexibility in a rotating shaft–disk–blade system. They studied the
free vibration and classified four types of coupling modes, shaft–
blade (SB), shaft–disk–blade (SDB), disk–blade (DB), and blade–
blade (BB). Huang et al. [22] used same method to show the
damping effect and the vibration analysis of a shaft–disk–blade
system with viscoelastic layers on blades. Chiu and Huang [23]
used assumed mode method to analyze the shaft-torsion and
blade-bending coupling vibrations of a rotor system, in which the
blades were grouped with lacing wires. They found the SB modes
are unaffected by the lacing wires. That was however for a disk case.

In this paper, the rigid disk was considered and the blade is
assumed to be of Euler type with no stagger angle. The emphasis is
in the coupling behavior between shaft-torsion and blade-bending.
The frequencies and the corresponding mode shapes in the shaft–
disk–blade system are derived and discussed. Second, the paper
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Nomenclature

q generalized vector
vb blade displacements with respect to the Y2 axes
v̂b blade displacements with respect to the Y3 axis
Vi ith mode shape of the blade
wb blade displacements with respect to the Z2 axes
wd disk transverse displacement with respect to the

Z1 axis
Wi ith mode shape of the disk
f shaft–disk torsional displacement relative to rotation frame

Fi ith mode shape of the shaft–disk
o natural frequency
ob1 first nature frequency of single cantilever blade
O rotational speed

Subscripts

ðÞb blade
ðÞd disk
()s shaft

Y.-J. Chiu, D.-Z. Chen / International Journal of Mechanical Sciences 53 (2011) 1–102
intended to provide a qualitative and quantitative overview of a
periodic rotor with multi-disk. At last, the effects of rotation on the
changes of the rotor’s natural frequencies were illustrated.
2. Theoretical analysis

A rotor system composed of shaft, multi-disk, and blades is
shown in Fig. 1. The rotor contains a torsional shaft, rigid disks, and
flexible blades fixed onto the outer edge of the disk. Zd1 is the first
disk’s distance, and d1 is the distance between two disks. Energies
of the system are first derived and the assumed mode method is
employed to discretize the equations of motion.

The torsional energies associated with the shaft–disk are

Ts ¼
1

2

Z Ls

0
Is

@f
@t
þO

� �2

dZþ
Id

2
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where c(Z,t) is the torsional displacement with respect to a
constantly rotating (O) frame; Ls, Is, and GsJs denote the shaft’s
length, polar rotary inertia, and torsional rigidity, respectively. Id is
the disk’s polar rotary inertia.
Zd1 d1

Shaft

Blade

Disk

Ω
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Fig. 1. A multi-disks rotor system.
Fig. 2 shows a typical rotating blade cantilevered onto a rigid
disk. (X1, Y1, Z1) coordinate system is the inertia frame, (x2, y2, z2)
frame rotates at a constant speed, and (x3, y3, z3) frame is fixed to
the blade’s root.

The kinetic and strain energies associated with a blade are
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Fig. 2. Coordinate sets and deformation of a rotating blade.

Table 1
Geometric and material properties of the illustrated examples.

Shaft

Density: rs 7850 kg/m3

Shear modulus: Gs 75 GPa

Shaft length: Ls 0.6 m

Radius: rs 0.04 m

Disk

Density: rd 7850 kg/m3

Location: zd 0.3 m

Outer radius: rd 0.2 m

Blade

Density: rb 7850 kg/m3

Young’s modulus: Eb 200 GPa

Blade outer end: rb 0.4 m

Cross-section: Ab 1.2�10�4 m2

Area moment of inertia: IA 1.92�10�9 m2

Rotational speed: O 0–2000 Hz
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where vb is the transverse displacements in y2 direction. IA is the area
moment of inertia about the z3 axis, and Ib is the polar moment of
inertia. The displacement of the blade vb(x,t) consists of the shaft’s
torsional displacementf(Zd,t) and the blade’s bending displacement
v̂b(x,t). The kinematic relations between these displacements are

vbðx,tÞ ¼ v̂bþxf9Zd
ð5Þ

The assumed mode method is adopted to discretize the con-
tinuous system, i.e.,

fðZ,tÞ ¼
Xns

i ¼ 1

FiðZÞZiðtÞ ¼FðZÞZðtÞ ð6Þ

v̂bk
ðx,tÞ ¼

Xnb

i ¼ 1

ViðxÞxikðtÞ ¼VðxÞ, k¼ 1,2, . . ., N ð7Þ
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Fig. 3. Frequency changes due to blades in a two- to a six-blades rotor.

Table 2
Natural frequencies (Hz) of shaft–disk and clamped blade.

Component’s n.f. o1 o2 o3

Shaft–disk (w/o blades) 207.418 2645.690 5267.204

Clamped blade (shaft–disk rigid) 81.538 510.99 1430.788
where Fi and Vi are the mode shapes of a torsional shaft and of a
bending blade, respectively. These modes are chosen to be

FiðZÞ ¼ sin
ð2i�1ÞpZ

2Ls

� �
ð8Þ

ViðxÞ ¼ ðsintix�sinhtixÞþaiðcostix�coshtixÞ ð9Þ

is the beam function for blade with

½costiðrb�rdÞ�½coshtiðrb�rdÞ�þ1¼ 0 ð10Þ

ai ¼
�sintiðrb�rdÞ�sinhtiðrb�rdÞ

costiðrb�rdÞþcoshtiðrb�rdÞ
ð11Þ

Zi and xik are the participation factors. n’s with subscripts for the
corresponding subsystems are the number of modes deemed
necessary for required accuracy. In this study, the terms (ns,
nb)¼(7, 10) is enough to yield an accuracy up to 10�5 Hz.

Substitution of the above equations into the energy expressions
and employment of the Lagrange equations yields the following
discretizated equations of motion in matrix notation as:

½M� €qþð½Ke
��O2

½KO
�Þ ¼ 0 ð12Þ

where [Ke], arising from the elastic deflection, dominates at low
rotational speed. The term �O2

½KO
�, resulted from rotation, softens

the rotor so that it becomes very significant at high rotational
speed. It is also the major role affecting the stability of the rotor. The
matrices [M], [Ke], and [KO]are given in Appendix A.

The matrices’s dimensions are (ns+Nd�Nb�nb)� (ns+Nd�

Nb�nb), where Nd and Nb are the number of disks and blades.
q is a generalized vector, i.e.,

q¼ fZT \xT
11 � � � x
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g

T
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In the usual manner for free vibration analysis, it is assumed the
solution is of the form q¼{c}elt with {c} the undetermined
coefficient vector and l represents for the eigenvalue. Note that
l is a pure imaginary number for most of undamped rotors, i.e.,
l¼ io, i¼

ffiffiffiffiffiffiffi
�1
p

. Eq. (12) then yields to be

fð½Ke��O2
½KO�Þþl2

½M�gfcg ¼ f0g ð14Þ

The characteristic equation is
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The mode shapes are solved for by first solving step for the
eigenvalue from Eq. (15), then the eigenvectors from Eq. (12).
Substitute the obtained eigenvalues and eigenvectors into Eqs. (6)
and (7), then the mode shapes are sketched.
3. Numerical results

To be dimensional independent, the numerical results are
normalized with respect to the disk’s distance, therein, d*

¼d1/Zd1.
Table 1 lists the geometric and material properties of the illustrated
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examples. Note that, the length of blades is deliberately elongated in
order to magnify the coupling behaviors. Table 2 provides a compar-
ison basis for the effects of component on coupling vibration. These
frequencies serve as validation and interpretation of the numerical
results as well.

It is first of interest to realize how the blades affect the coupling
vibrations. Fig. 3 shows the frequency changes for a two- to a six-
blade system. 1a1 and 1b1 modes belong to a set where the blade’s
first mode predominates in a disk system. 1c1 mode belong to a set
where the shaft’s first mode predominates in a disk system. 1d1 and
1e1 modes belong to a set where the blade’s second mode
predominates in a disk system. Note that the abscissa, not drawn
in a linear scale, has three reference marks at o¼81.538, 207.43
and 510.99, respectively, denoting the cantilevered blade’s first
bending, shaft’s first torsion and the blade’s second bending
frequency (Table 1). For a disk system, the coupling modes could
be grouped into two categories, including, the shaft–blade (SB) and
blade–blade (BB). The BB modes were of repeated frequencies of
(Nb�1) multiplicity for number blades.

Fig. 4 shows the frequency changes due to disks in a five-
blades rotor. 1a and 1b modes belong to a set where the blade’s
first mode predominates in a multi-disk system. For a multi-disk
system, the coupling modes also could be grouped into two
categories, the shaft–blade (SB) and blade–blade (BB). Fig. 4
reveals a very significant phenomenon that the BB modes were
of repeated frequencies of [Nd� (Nb�1)] multiplicity for number
disks. The shaft–blade (SB) modes where the blade’s mode
predominates were of frequencies of Nd for number disks. The
shaft–blade (SB) modes where the shaft’s mode predominates
retained a mode, but the frequency reduced along with the disk
number.
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Figs. 5–7 show the modes where the blade’s and shaft’s first
mode predominates of the five-blades for a one-disk to three-
disk rotor.

Fig. 5 demonstrates the mode shapes of five-blade and one-disk
case. The first line plot denotes the shaft’s torsional displacement
and the disk’s and blade’s deflection are illustrated in the following
diagrams. Modes 1a1 and 1c1 have torsional displacements so
that classified as SB modes. Fig. 6 shows five-blade and two-disk
case. Compared to Fig. 5, it is seen that 1a21 and 1a22 modes are
due to two-disk. Fig. 7 shows five-blade and three-disk case.
Compared to Fig. 5, it is seen that 1a31, 1a32, and 1a32 modes are
due to three-disk. That means the shaft–blade (SB) modes where
the blade’s mode predominates were of frequencies of Nd for
number disks.

Fig. 8 illustrates how the frequency of the first three modes,
varying with disks distance for a two-disks and five-blades rotor.
Via the shaft–blade (SB) modes, 1a21 and 1a22 modes, it is seen that
the frequency basically decreases with disks distance. From the
figure, it is seen that the frequencies of 1a21 and 1a22 modes have 1%
and 0.1% decrease from 0.2 to 2.0 with normalize disks distance.

The rotor’s natural frequencies varying with rotation are illu-
strated. Figs. 9–11 plots the natural frequencies of a five-blade
rotor. Fig. 9(a) shows, it is seen there exist frequency splits at each
mode (as has been shown in Figs. 4 and 5). For the forward
(positive) and backward (negative) frequencies approach to each
other with the increase of rotation, two frequencies eventually
merge and become one. At the merge point, the system implies a
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possible instability. The authors adopted absolute value in y-axis in
Fig. 9(a). Fig. 9(b) draws the real part of l varying with rotation. It is
seen that Re(l) is zero before merging point, at which it becomes a
pair of real numbers. It is seen that instability occurs at 1a1 mode is
650 Hz, but not for the others. Note that 1a1 mode is a SB mode.
Fig. 10 shows two-disk case. Compared to Fig. 9, it is seen that 1a21

and 1a22 modes implies possible instability. At the merge point, the
frequency of 1a21 mode is 450 Hz is earlier than 1a1 mode. Fig. 10
shows three-disk case. Compared to Fig. 9, it is seen that 1a31, 1a32,
and 1a33 modes imply possible instability. At the merge point, the
frequency of 1a31 mode is 400 Hz is earlier than 1a1 and 1a21

modes. Form the results it is seen that two important phenomena.
First, a disk rotor implies a possible instability. Two-disk case
causes two counts of possible instability, and so on. That means the
times of instability will due to the number of disk. Second, the
instability for three-disk case appears earlier than one- or two- disk
case. In other words, it is seen that the more disk rotor causes
instability earlier than the less disk case.
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4. Conclusion

This paper discussed the shaft-torsion and blade-bending
coupling vibrations of a multi-disk rotor system. The assumed
modes method was employed for the analysis.

The study began with the modes evolvement resulting from a
disk. It is arrived at that the coupling modes could be grouped into
two categories, the shaft–blade (SB) and blade–blade (BB). The BB
modes were of repeated frequencies of (Nb�1) multiplicity for
number blades.
A multi-disk system has drawn two important phenomena on
the coupling modes. The SB modes added to Nd modes for number
disks where the blade’s mode predominates. The BB modes were of
repeated frequencies of [Nd� (Nb�1)] multiplicity for number
disks. Numerical calculation also revealed that the natural fre-
quencies were affected by the disk distance.

As to rotation effects, the multi-disk has drawn two important
phenomena. First, the times of instability will be due to the number
of disk. Second, the more disk rotor causes instability earlier than
the less disk case.
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Appendix A. Matrices elements
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