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This paper attempts to illustrate the technology evolution for describing the emergence, develop-
ment, or demise of a technology field. The basic idea is to divide a technology field into tight-knit
communities over time and track their inter-year continuity. Then the evolving trajectories are
presented through visualizing the timeline plot where each community is drawn as a function
of its size, average age, and time. Analyzing a set of patents related to smart grid, we found that
this technology consists of several trajectories. Among them, the subjects of network manage-
ment and e-commerce are relatively young and active. The power system recently has emerged
owing to the joining of integration and management concepts. As aging subjects, wireless com-
munication system receives more attention than wired one does. The proposed timeline plot
gives insights into evolving trajectories, from which the structure of the technology could be in-
vestigated and certain emerging subjects might be figured out. Such understandings are essential
information to experts who endeavor to profile technology development and keep up with cur-
rent trends.
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1. Introduction

Technology management (TM) is one of the fastest growing research topics. It is a set of management disciplines that allows
organizations to make a better use of their technological capital to maintain their competitive edge. Typical functions used in
technology management include technological strategy, planning, forecasting, life cycle management, and road-mapping.
Among them, life cycle management, a method to monitor and to track the technology evolution, is regarded as the third-most
important function of TM for large companies [1]. It guides organizations to invest, develop, and venture in the desired direction.
Thanks to the increasing availability of information resources, supercomputing power, storage capacity, and advanced visualiza-
tion tools [2], management can be carried out much more rapidly and robustly than in the past.

Social network is a social structure composed of vertices which are tied by specific type of interdependency. Its main goals are
to monitor and interpret patterns of social ties among vertices, to visualize how the vertices in a group relate to each other, and to
reveal structural characteristics of social groups [3]. This graph-based method is widely applied on various implications due to
many kinds of ties between various of vertices. Research in some academic fields has shown that social networks operate on dis-
tinct levels and objects, from individuals up to the level of nations; from non-biology to biology, to which researchers succeed in
solving their problems. In the field of bibliometrics, the construction of social network is commonly used to trace relationships
amongst disciplines, institutions, fields, documents and authors. It has been used to assess the impact of specific articles, authors,
and journals; to classify documents in one or more disciplines; to identify interrelationships between authors from different in-
stitutions; and to study the homogeneity or heterogeneity or collaboration patterns among different analyzed units. Bibliometrics
has gained its importance in understanding the past intellectual knowledge accumulation or interaction and even in forecasting
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its future development, which would be useful for analysts in the process of decision making, science policy, and management
[4,5].

To look insight into the technology structure, in general, the analysis results of a bulk of documents are usually presented in a
visualized graph called a map. The properties and behaviors of a map can be viewed from graph-, community-, or vertex-level
perspectives. Interests are especially highlighted in understanding underlying community-level structures where documents
share a passion about a particular topic, and interact to expand their field expertise [6,7]. Early research, however, extracted tech-
nology communities and captured their static properties as a snapshot, ignoring the fact that most real-world communities are of
a dynamic nature. Recent research has, by and large, trended to use dynamics to explore how technology communities evolve
over time [8]. With a window sliding through a sequence of time points, the addition and deletion of documents and citation re-
lationships will cause previous documents of a community to be removed while new ones are gradually added. The critical issue
after extracting communities at each snapshot is then to use temporal information to track which technology community at a
time has evolved into which community in the next snapshot. Following these links through time allows researchers to create
what are referred to as technological community strings. These strings can represent the complex survival, birth, death, branching,
or merging patterns of a community transition [9]. It is commonly believed that monitoring technology evolution can be useful for
effectively categorizing and tracking the changes of trajectory of the technology dynamics.

In this paper, we describe here a framework for modeling community evolution that successfully addresses the requirements of
the dynamic environment and presents the evolving patent citation network. Smart grid technology is an emerging field for next-
generation energy delivery and measurement; it serves as an example in this study. The proposed method starts by converting an
evolving network into a sequence of static but overlapping snapshots. Next, communities of each snapshot are obtained separately
using the Girvan–Newman (GN) algorithm [10], i.e.which are called rolling clustering procedure [11]. Two communities across con-
secutive time points are linked by a string if they share most of their contents. Those strings were then characterized as certain types
of transition patterns, enabling new and interesting insights into the characterization of the dynamic behavior of the evolving net-
works [12]. Finally, evolving community trajectories are visualized by a timeline plot where communities are plotted as a function
of size, average age, and time. It would be more evident and convenient to characterize technology evolution if a timeline plot
could be visualized [13]. The benefits of visualization have recently been of much interest for knowledge discovery and tracking.
The evolution of tight-knit communities within a particular technology helps one tomake useful inferences about its development pro-
file. It can further offer an intellectual basis for understanding of the “selection environment” [14] such that research and development
(R&D) managers or policy makers will find profitable innovations to undertake.

The rest of this paper is organized as follows. In Section 2, we review related research. In Section 3, we describe and explain our
research methodology of this study. In Section 4, we depict the experimental environment and present the results. The concluding
remarks and further suggestions are discussed in Section 5.

2. Literature review

2.1. Bibliometric analysis on technology evolution

Bibliometrics has been used to analyze academic publications or patent citations. One of the essential issues among current
bibliometric studies would be how to implement a convincing tool to identify the progresses of technologies and have been un-
dertaken over the years. Dynamics is the crucial element on depicting the evolvement of technology across a certain time span. It
is also valuable for researchers or enterprises to analyze the content of the documents and identify dominating topics so as to
keep update with the recently technology development. Important prior arts regarding technology evolution have been pre-
sented as follows:

Chen et al. [13] constructed a static map by integrating principal component analysis and pathfinder network for documents so
that viewers could focus on the citation changes in communities annually. Boyack et al. [15] used a force-directed placement algo-
rithm to place similar documents together which were clustered to form mountains on a terrain. If the full time data was limited
to consecutive time periods, the growth, reduction, and shifts among the terrains can be analyzed. However, the dynamics of a net-
work is not well understood owing to the pursuit of a stable reference framework for tracking. Viewers can only observe the growth
and reduction of communities rather than the phenomena of branching or merging. Morris et al. [16] suggested the self-
organizational map (SOM) to identify interesting communities on the map manually. The map comprised a horizontal set of groups
graphed along the time axis. However, thework is not actually dynamic in nature. It still does not reveal the condition of branching or
merging. Morris et al. [17] provided a timeline plot where documents were plotted on the x-axis in terms of their issue date and their
cluster leaf position on the dendrogramon the y-axis. In theirmethod, technology branching can potentially be examined through the
arrows indicating information flow. However, the dilemma about network dynamics is still not adequately addressed. Huang et al.
[18] adopted the multi-level SOM to generate content maps of several time periods. In their method, users can observe some general
trends by comparing the dominating regions ofmaps in different periods. However, it is a difficult task to ascertain the topic evolution
based on a series of maps. Blei and Lafferty [19] developed a dynamic topic model and used the posterior analysis to capture different
scientific themes for the trends ofword usage inspection. However, thismethod does not reveal the technology branching ormerging.
With the efforts of Small [20], Small and Upham [9], and Kandylas et al. [11], the sliding window was introduced for modeling the
dynamic environment of a citation network. After a clustering was carried out in a snapshot, dynamic change was engaged by sliding
the window over time, and then strings were linked between communities in successive snapshots if they shared common docu-
ments. This concept is quite attractive except for the ordination of the community evolving trajectories. Recently, Shibata et al.
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[21,22] employed Girvan–Newman (GN) clustering algorithm on largest connected component (LCC) of the network in each snap-
shot, then handled dynamic change in a manner similar to Small [20]. They provided a plot of topic evolution as well as a novel plot
where communities are located in terms of their average age against the time. Average age can effectively point out the technology
which is under the newly breakthrough. Distinct from previous studies described above, their works ought not to specify the number
of clusters due to theGNalgorithm is a parameter-free algorithm. Unfortunately, their plots are notwell integrated. And some emerging
communities may not link to the LCC and are thus excluded. Finally, only arrival rather than departure of documents occurred because
an incremental window was used. Based on the research cited above, some prerequisites for modeling evolving communities can be
defined:

(1) A 2D visualization plot is preferable for human eyes.
(2) Dynamics of arrival and departure of documents at each snapshot can be simulated by creating a sliding window.
(3) Only the inherent structure of the entire citation network should be analyzed to determine how it is partitioned by a natural

clustering algorithm rather than by human judgment.
(4) Patterns of community transition should be thoroughly considered.
(5) Ordinations of community evolving trajectories should be meaningful.

With these prerequisites in mind, we describe here a framework in subsequent section for modeling community evolution
that successfully addresses the requirements of the dynamic environment and presents the evolving patent citation network.

2.2. Girvan–Newman algorithm

Some actual networks, such as the citation networks, present modular structure in which these networks are formed by commu-
nities of vertices. Ties found between vertices inside the same community are more common; ties between vertices of different com-
munities are less common [23]. Community detection in citation networks is a subject worthy of careful study because documents
belonging to the same community aremore likely to share properties and dynamics in common. Asmentioned before,manymethods
had been applied to detect communities [15–22]. Among them, the single-linkage clustering is subject to chaining effects. The
complete-linkage clustering could result in a number of singletons. The SOFM clustering or dynamic topic model requires “a priori”
based on the analyst's perception of the optimal partition. Hence the Girvan–Newman (GN) clustering [10] was used in this study
to alleviate the problems concerned above for it is a model to cluster networks with common characteristics based on modularity.
Besides, GN clustering has two major strengths: first, it is a topological clustering method and therefore suitable for analyzing data
and presenting network structure; second, it is parameter-free, whichmeans that it does not involve human judgment to set a priori
for the number of clusters. The Girvan–Newman (GN) algorithm is implemented as follows. Given a patent citation network which is
composed of N vertices and M ties. This network can be represented by an N×N adjacency matrix A with elements

aij ¼ 1 if iand jare connected:
0 otherwise:

�
ð1Þ

where i, j=1, 2, …, N. Betweennesses of ties are first calculated. The tie that has the highest betweenness is removed from the
network. The betweennesses of all ties on the remaining network are then recalculated. The modularity (Q), a measurement to
represent the goodness community division, is evaluated by

Q ¼ 1
2M

∑ij aij−
ninj

2M

� �
δ pi;pj

� �
ð2Þ

where δ(pi, pj) is 1 if patents i and j fall in the same community and 0 otherwise; ni is the number of references to patent i. This
process is repeated until ties are totally removed. After the iterations stop, the succession of split networks competes with
each other in terms of its ownmodularity. The result with highest value of the modularity is adopted because it has the best
split structure [10]. In general, a good partition of a network into clusters means there are many within-cluster ties and
minimal between-cluster ties [24]. In the case of patent analysis, patents related to the same subject are typically arranged
in the same community, facilitating subsequent procedure of topic identification.

2.3. Natural language processing

After the clustering procedure was carried out, one important step to help analysts interpret the results is to generate a the-
matic topic for each community. This could be a manual task of summarization [25]. For each community, the topic can be
detected by identifying the characteristic terms using natural language processing (NLP) [21]. First of all, the document titles
and abstracts are collected for each community, called a corpus. Second, the keywords of the corpus are extracted through a cleaning
process by lower case conversion,multiplewhitespace stripping, and stop-word elimination, and then a keyword hierarchy is generated.
Finally, these terms areweighted using aweight scheme tomeasure the importance of each term in a certain community. Such automatic
procedure paves the way for identifying the topic of a community as well as understanding its evolution dynamically.
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2.4. Community transition

A community transition at a given time is a change experienced by a community that has been discovered at an earlier time
[26]. Community transitions may survive by recruiting or losing members; two or more communities may merge or a community
may split; old communities may die and new ones may be born [27]. Many solutions have been discussed. Palla et al. [27] pro-
posed a joint graph method to do matching. Such a method can reveal only growing, merging or unchanging transitions because
any community from successive snapshots is contained in exactly one community in the joint graph. Aynaud and Guillaume [28]
adopted the Kuhn–Munkres (KM) algorithm to do intelligible matching. However, the KM matching is a one-to-one association;
that is, there are no branching transitions, no merging, and no birth of new communities. Spiliopoulou et al. [26] matched com-
munities across two snapshots: if the percentage of intersection is significantly high, different kinds of transitions could therefore
be identified through the introduction to many rules. In this paper, the idea of matching intersection percentage of communities is
adopted due to a many-to-many association where the transition patterns could be thoroughly considered.

3. Methodology

For a long time, patents have been acknowledged to have rich information for assessing R&D management and technique
diffusion. Patent citation analysis is a widely usedmethod for conducting advanced analysis of technological change. The reason
is that a technology will be expanded, enhanced, or enriched as new patents are issued to technology researchers or developers,
whose knowledge is built on original patents [29]. So patent citation analysis over time may capture useful information about the
evolution of a technology as it follows its growing pattern [30]. Patent documents related to smart grid technology were collected
and then arranged in increasing order by issue date. Analysis of this dataset follows four steps. First, the length and sliding step of
the window were determined to divide the whole dataset into a sequence of overlapping snapshots. Second, a patent citation matrix
for each snapshotwas independently constructed and then clustered into communities. Third, stringswere formed across communities
between consecutive time points for qualified pairs. A timeline plot of the technology evolutionwas finally developed. The detailed pro-
cess of the proposed method is described and explained below.

3.1. Sliding window

The proposed framework not only aggregates the patents but also discards them after a defined period. It provides a dynamic
view of the patent citation network by splitting it into time slices that are defined by a window [31]. Generally, the length of the
window depends on the time lag between a set of current patents and their prior art. Such an interval can measure how long the
granted patents impacted on the technology or received of scientific information [32]. The technology cycle time (TCT) of a spe-
cific domain is one of the well-known indicators used to measure the pace of technological progress or change [33]. Let Ti be the
issue year of patent i. Then the formula for calculating TCT is

TCT ¼
∑N

i¼1Medianri
j¼1 Tj−Ti

��� ���
N

þ 0:5

2
4

3
5 ð3Þ

where patent j cites patent i for j=1, 2, …, ri where ri is the number of patents cite the patent i. N denotes the number of patents.
The |X| is the absolute value of X. The notation of the enclosing square brackets, [Y], indicates the Gaussian function. The value Y
will be rounded to the nearest integer. The TCT represents the average value of median age gaps between the subject patent and
other cited patents within a technology domain. The TCT varies for different technologies: a shorter TCT value reflects faster-
moving technologies, while a longer TCT value indicates slower-moving technologies [4].

Furthermore, we decided that the defined window should be in an overlapping mode, i.e. the next window partially overlaps
with the preceding one as for a moving average [34]. The rationales of using shorter time periods and temporal overlapping is to
ensure some consistency in community composition over time [35], to allow new communities to emerge and existing commu-
nities to merge, split or die away [11], to show evolution [36], to identify new members as a sign of an emerging trend, and to
provide a mean for detecting the shift of research focus [37]. Following the rule of thumb of Moody et al. [38], a sliding window
that overlaps in incremental shifts of a fifth of window length was considered most appropriate. Moody et al. [38] suggested that
such sliding window step width could best capture the fluidity of interaction patterns and simultaneously reduce the fluctuation
across snapshots so that some continuity is preserved. Thus, we reused the patents and citations involved in the last (TCT− [TCT/
5+0.5]) years of the prior window for the next one. It is noteworthy that if the value of TCT of a technology field is less than or
equal to 2 years, the criterion of Moody et al. [38] does not work. Scaling up the resolution into half yearly, quarterly, or even
monthly are potential solutions. A series of large-scale networks would be necessary to analyze such an extremely rapidly pro-
gressing environment.

3.2. Community detection and identification

In patent citation network of this paper, vertices represent individual patents and ties between two vertices represent direct
citations. Longitudinal data were used to create a linear window-by-window relationship among patents, thus enabling a time
series analysis. If networks are created on a specific cut-off year, then the patents issued from year (y−TCT+1) to year y are
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adopted. A small proportion of isolated patents did not contain references and were therefore excluded. In network analysis, com-
munities are detected using the GN algorithm. After a clustering procedure is carried out in one time period, two measurements,
based on size and average age, are evaluated for the communities. The first index, size, reflects how influential the scope of a topic
is in the current technology environment. The larger the cluster size, the more attention (and likely funding) it has received. The
size of each community can be normalized by dividing by the total number of patents in the network. A dominant community
threshold α∈ [0, 1] is set to filter out weak communities having relatively few patents involved. Another index, the average
age, reflects the age of a community. In a rapidly emerging community, patents related to that community are recent and in
many cases zero. In contrast, an old community usually indicates that the patents belong to a stagnating topic or are out of contact
with the main stream.

Furthermore, technology topics are detected by identifying the characteristic terms for each community using NLP. After patents'
titles and abstracts of each community are aggregated as the corpus, keyword extraction process is executed through the following
stages: first, conversion of lower case, and then stripping of multiple whitespace; next, elimination of stop-words (such as ‘a’,
‘been’, ‘the’ and so on), and finally, generation of 4-level keyword hierarchy. In such hierarchy, a keyword at a higher level is seman-
tically more general than a keyword at a lower level. The phrase was truncated at the fourth level for the term frequency was hardly
more than one in the fifth level ormore. In each community, if a specific key phrase is found, the corresponding vector field is assigned
by the times of its occurrence. Then a weighting scheme, named tf-icf (term frequency-inverse community frequency), is adopted
here to measure the frequency and distinctiveness of each term in a certain community [21]. The tf-icf value of term k in community
s is given by

tf−icfk;s ¼ tfk;s � log
S
cfk

� �
ð4Þ

where tfk,s is the number of occurrences of term k in community s, cfk is the number of communities containing term k, and S is the
total number of communities generated by the GN algorithm. In this paper, the terms associated with the top tf-icf values in each
community are regarded as its characteristic terms.

3.3. Community transitions

As what have been stated in Section 2.4, the idea of Spiliopoulou et al. [26] is followed by this study because it takes into account
the transition patterns thoroughly. Let ζy be a set of communities discovered at year y and C∈ζy and C′∈ζy+[TCT/5+0.5] be two com-
munities of two successive snapshots that we wish to compare. The overlap of C with C′ is

overlap C;C′
� �

¼
C∩C′
��� ���

Cj j ð5Þ

where |C| is the number of patents in a community. A high overlap occurs when two communities have many patents in common.
Further, a strong string threshold β∈ [0, 1] is set to determine whether C′ is a match to C. The strong string threshold captures the
tolerance to member fluctuation. Note that if β is restricted to the interval [0.5, 1], a community is at most a match (i.e. branching
transitions will never happen). With the proper setting of the β value, those strings can decide complex community transitions,
comprising survival, birth, death, branching, or merging patterns.

3.4. Technology evolution plot

Technology evolution is visualized in a timeline plot in which technological communities are drawn as a function of their size and
average age against time. The communities are plotted two-dimensionally according to the analytical time points of the sliding win-
dow and average age. The number of patents in each cluster is represented by the size of a circle. Refer to Fig. 1, the drafting procedure
can be done by filtering out the weak communities, linking the community strings among consecutive time points, sweeping off in-
significant strings, and then identifying trajectories. In such timeline plot, a technology trajectory is an isolated connected component
and it is composed of at least two successive year fronts linked by string which shows the evolution of a technology front over time.
These trajectories are all marked in color in order to presentmore clearly. Finally, a pie chart is superimposed on the circle where the
arc length of each sector is proportional to the quantity of inheritable, non-inheritable, and immediate patents. An inheritable patent
indicates a pre-existing patent inherited from one or more dominant communities at a previous time point; a non-inheritable patent
indicates a pre-existing patentwithout involving an inherent relationship; an immediate patent indicates a newly joining patent that
belongs to a dominant community.

4. Results and discussions

We appreciate the claims of Eisenhardt [39] and Yin [40] that case studies can involve either single or multiple cases. In order
to demonstrate the feasibility of the research methodology and realize a given widely concerned technology deeply, a case, smart
grid technology, was chosen in this paper. Smart grid technology has raised great expectations concerning environmental protec-
tion, energy saving, and reduced carbon emissions. The rapid development of smart grid technology is attracting both inventors
and funding. It aims to deliver and monitor electricity consumption using multi-directional technologies that allocate and meter
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power flows dynamically to ensure efficiency, savings, and reliability [41]. Having always been utilized in R & D project manage-
ment to assess competitive position and to avoid infringement [42], patents were treated as the document source for analysis in
this paper. The United States Patent Classification (USPC) categories are used to indicate different patent technology fields. Our
focused technology is represented by partial of current USPC main class 307, 340, 370, 455, 700, 702, and 709. For the dates
range from 1995 to 2009, 15,948 patent documents were retrieved from the database of the United States Patent & Trademark
Office (USPTO). Not only attribute data (i.e. issue date, title, and abstract), but relational data (i.e. reference list), for the selected
patents were also recorded. As shown in Fig. 2, the number of patents started to grow dramatically after 1997 and the rate of
growth is increasing. Currently, there are more than 2000 patents annually on this subject matter.

After collecting the patent documentation, the next step was the analysis. This was done using a self-programming toolkit
under the ‘R’ environment with the igraph, tm, RWeka, stringr, and plotrix packages (http://cran.r-project.org/). To decide the
length of the sliding window, we calculated the average time lag of the patent inventions upon which a new invention was
based: this yielded a TCT value of 5. It implicates that the smart grid technology is a fast-moving technology [4]. Using the crite-
rion of a fifth of window length established the step width of a sliding window as 1 year. The 5-year period window is not too big
to obscure the dynamics of community evolution; it is not too small either that the patents and the citations in each period were
too scarce to be segmented appropriately [11]. After the length and step size of window was specified, all patents and citations
that occurred in this windowwere aggregated into a patent citation network for each time point. Related patents were assembled
as communities through a GN clustering operation, identifying dominant communities for subsequent size and average age cal-
culation and topic detection. The problem of identifying dominant communities is transformed into generating an α value to filter
out the communities with relatively small size. We stacked the normalized size of communities of all the networks and produced
a histogram. According to our experience, the shape of histogram usually follows an exponential distribution as shown in Fig. 3.
The shape of the distribution is primarily related to the GN algorithm which potentially provides many extremely weak commu-
nities as well as few strong ones. Rosin thresholding from image processing [43] was used in our method to automatically deter-
mine a corner point of the exponential histogram for preserving dominant communities [44]. In this study, the corner point of
histogram is marked by a dotted line as shown in Fig. 3, which means that α value was set to 0.036. Only the communities
with normalized size larger than α would be discussed. Moreover, to track community continuity, we linked these objects over
time if their associated inter-year community overlap was larger than the threshold β. To do so, we stacked all the inter-year com-
munity overlaps to produce a histogram. According to our experiences, the shape of histogram usually follows a bimodal
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distribution as shown in Fig. 4. The shape of this distribution indicates a crisp continuity of inter-year communities. Otsu thresholding
originating from image processing [45]was used in ourmethod to automatically determine a demarcation of the bimodal histogram for
removing theweak strings. In this study, the demarcation of histogram ismarked by a dotted line as shown in Fig. 4, whichmeans theβ
value was set to 0. 411. Only the strings with the overlap larger than βwould be drawn. Essentially, what we did above was to chain a
series of communities with similar topic and make manifest continuity while presenting an evolving trajectory of communities. Using
the information of dominant communities and strong strings, the evolution plot of smart grid technology over the 11 periods from1999
to 2009 is shown in Fig. 5. The plot is chronological from left to right. The size of the pie chart is proportional to the number of patents in
the community and the arc length of each sector is proportional to the quantity of inheritable (white), non-inheritable (gray), and im-
mediate patents (black). Since a single characteristic termmay represent only one aspect of technology topics, a set of the characteristic
terms are more capable to point out the precise view of them. In other words, the topics can be regarded as the assembly of individual
characteristic terms [46]. Thus, the top ten characteristic terms of each community in a trajectory were collected. To break down root
topics that potentially contribute to a particular technology domain, characteristic terms were aggregated into subjects manually over
time. Users would gain insight into what happened historically by cross-referencing the timeline plot and the corresponding subject
evolution diagram of a trajectory.

As shown in Fig. 5, smart grid technology is composed of six evolving trajectories, marked T1 to T6, which are arranged by the
order of average age of the terminal communities. Inspecting the top ten characteristic terms of the communities of each trajec-
tory, smart grid system configuration is clearly a combination of the individual components. It basically encompasses e-commerce
(T1), network management (T2), wireless communication system (T3), pulse width modulation (pwm) and reactive power

Fig. 3. Histogram of annually normalized size of communities.
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compensation (T4), power system (T5), and modem and wired communication system (T6). A smart grid system operates in sev-
eral steps. First, the energy consumption data are measured with meters. The wired/wireless communication system transfers data
from the meters to the servers. The central systemmanages all the customer transactions and releases real-time information regard-
ing market price and promotion plans on a website. Energy trading or exchanging is also possible if customers have surplus energy
[47]. Additionally, as shown in Figs. 6–10, we summarized characteristic terms of each trajectory in a subject evolution diagram
over time manually for further analyzing. Diagram for the trajectory T4 was excluded because its prolonged period is too short to
make sense.

In Fig. 5, trajectory T1 represents e-commerce in smart grid technology, which provides a web portal for the market where
customers can buy (sell) electricity from (to) different companies through different plans. In Figs. 5 and 6, the exchange, catalog,
matching, auction, payment, and purchase systems have been developing for the past decade in order to enrich the functionality,
private, or security of a trading and transactions platform. Then as the diversity of commodities increased, commodity manage-
ment and e-commerce received more attentions, hailing the advent of adverting system. However, T1 community's age rose dra-
matically since 2002 as it came to maturity with fairly few related patents joining in T1 nearly vanished in 2005. Since 2005, the
ideas of dynamic pricing developed significantly to support demand response to compensate intermittent production, activating
e-commerce in smart grid technology. Recently, a graphical interface for displaying information in an electronic trading environ-
ment has been an intellectual subject of much interest. And the issue of purchasing security is being contemplated once again.
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Fig. 5. Technology evolution plot of smart grid technology (□: inheritable patent; ■: non-inheritable patent; ■: immediate patent).

Fig. 4. Histogram of inter-year community overlaps.
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Trajectory T2 represents network management in smart grid technology. For long, managers increasingly question the need to
retain application separation. The primary responsibility of network management is to develop a framework that includes proto-
cols and model standards for information communication, collection, analysis, and management to achieve interoperability of
smart grid devices and systems [48]. The network supporting smart grids will be very complex and will handle large volumes
of information. In Figs. 5 and 7, the management aspects firstly focused on local area network (LAN), followed by outage manage-
ment, and then distribution management. Generally, managing or integrating the whole system is always the most dominant and
most active feature of smart grid technology. A great deal of recent concern has focused on wireless communication management.

Trajectory T3 represents the wireless communication system, whereas T6 represents the modem and wired communication
system. Traditionally, wired communication systems offered a reliable way for data transmission. However, with rises in wages
and costs of metals, the deployment costs for cables, trenching tunnels, and maintenance, costs have risen sharply. As the require-
ment of distribution automation continues to increase, wireless technologies have stepped up to the plate [49]. As shown in Fig. 5,
it is obvious why trajectory T3 is uniformly younger than T6: wireless is more recent than wired communication in the past de-
cade. We also observe that the slope of trajectory T6 is greater than that of T3. This could potentially be explained by the fact that
R&D staffs have paid more attention to wireless technology. In Figs. 5 and 8, cellular network technologies are continuously evolving
to meet the increasing demands for wireless services at mega-data level. Global system for mobile communications (GSM), general
packet radio service (GPRS), universalmobile telecommunication system (UMTS), andwireless interoperability formicrowave access
(WiMAX) have beenwidely deployed cellular systems. In the following years, other uniquewireless technologies such as ad-hoc net-
work, coordinator-basedwireless network, backbone network, and bluetooth are continuously developing tomeet different commu-
nication requirements. Recently, the frequency-hopping spread spectrum comprises most of the immediate patents that are used to
defend against the cyber threat of denial of service and to keep the grid secure. In Figs. 5 and 10, the wired communication systems
beginwith developing components for data transmission such as pulse-codedmodulation (PCM)modem, receiver, line probing, loop
carrier, modulator–demodulator, digital subscriber line (DSL), etc. so as to establish wired communication environments. In 2002,
minimizing distortions in data communications through linear/non-linear equalizers stirred investors' appetite. Then some compo-
nents designed for improving modem & DSL architecture were proposed during 2004–2007: the multiple x digital subscriber line
(xDSL) modems and multi-carrier technology that provide wide selection of interfaces and flexible incorporating on different
types of DSL service to obtain high-bandwidth and point-to-point function over existing infrastructure. The line-isolation circuitry
was embedded with a modem to provide a modem interface that allows synchronous modem transmission protocols. Recently,
voice over internet protocol (VoIP) is quite popular that uses a high-speed network connection to send signals of users' voice in
the formation of packets via the network.

Trajectory T4 represents the pwm inverter and reactive power compensation technique, which is used to increase transmis-
sion efficiency through reduced losses, grid congestion, increased transfer capability, and enhanced grid reliability [50]. T4 with
only two communities was found for 2001 and none was identified after 2002. Besides birth and death of communities in T4,
we also observe merging and splitting. In light of the move toward the trajectory T5, it is generally called the power system
and includes the components of electrical distribution, energy storage, power supplies, and their integrated management. It is
of relatively vintage as one of smart grid subjects. From Figs. 5 and 9, T5 is a branching trajectory that consists of three sub-
trajectories: the first sub-domain is power storage and supplies, which existed in 1999 with an average age of around 6, the sec-
ond one is related to power distribution, which existed in 1999 with an average age of about 7, and the last one is remote control
system, which emerged in 2005. The aspects of power management caused the first two sub-domains to merge in 2002. However,
due to the unstable relationship between them in the communities, it then split at the next time point. The ideas about power
factor control system joined in 2003 in the first sub-domain. It was, however, irresistible that the relative importance of the
sub-trajectories of the first two sub-domains was in a reverse order in 2004 due to many diagnostic and monitoring systems con-
ceptualized in the second sub-domain. Recently, controlling the flow of power to maintain reliable service and stable operation,
aspects of power system integration and energy management, were added to the power system in 2008. Until now, both of the
two aspects have inspired scientists a lot.

Fig. 7. Subject evolution diagram of T2 (network management).

Fig. 6. Subject evolution diagram of T1 (e-commerce).
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5. Conclusions and suggestions for future work

To study technology structure and its evolution, we have borrowed from social network theory and applied bibliometric analysis
to the issued patents of USPTO longitudinally. As detailed above, we described a framework formodeling community evolution of the
patent citation network with 2D visualization, environmental dynamics, natural clustering, completed transition patterns, and ratio-
nal trajectories ordination promised. The basic idea was that division of a technology domain into strongly connected communities
over time and track of their inter-year continuities can help to realize the technology evolution. Visualization technology improves
users' ability to comprehend the results of patent analysis more efficiently. The smart grid technology was chosen as a case study,
which is an emergent technology domain in energy issue and to be performed a series of patent citation network analyses at several
time points. First, we found that the smart grid technology encompasses several trajectories, including e-commerce, network man-
agement, wireless communication system, pwm and reactive power compensation, power system, and the modem and wired com-
munication system. We observed that the combination of the individually components can be regarded as an epitome of the smart
grid system configuration; it can be well mapped into service, control and connectivity, and energy planes of smart grid which
were summarized by Darmois [48]. This characteristic is quite attractive for users because this visualization can impress him/her to
seize the global structure of domain knowledge of smart grid technology more effectively. Second, the proposed methodology pro-
vides understanding and insight into technology development by cross-referencing a trajectory on the timeline plot and its corre-
sponding subject evolution diagram. Such process potentially assists policymakers to decide which innovation most deserve to be
invested. Among those trajectories, the pwm inverter and reactive power compensation technique are used to be popular but now
have become a history topic. The networkmanagement is the most dominant subject because smart grids become complex progres-
sively. Recently, it has focused onmanagement of wireless communications for facilitating the integration of different metering pro-
tocols, and has added security items into the wireless module. The e-commerce remains the hottest subject that engages to a visual
market display and the issue of purchasing security. Especially, the visualization techniques have reduced the large quantities of data
into the easily understandable visual formats so that managers can efficiently operate a grid. For households or business establish-
ments, visualization of power consumption is expected to feature with an effect of power-saving. The power system integration
has recently emerged owing to the join of management in energy concepts. Remote power control and optimal power distribution
planning are mainly concerned. As the aging subjects, the wireless communication system has relatively received more attention
from R&D staffs than the wired one has done. Due to the wireless connectivity, quick, and affordable application development and de-
ployment, it has become one of the critical components for infrastructures and has enabled the new solutions and revenue generating
services. The proposed timeline plot and subject evolution diagrams could potentially aid the related companies in technology planning,
road-mapping, and operations. Such understandings and insights are required to keep abreast of current trends, appropriate sub-
domains, and strategic timing of development and deployment.

The tie between vertices in this paper indicated a direct citation between patents. Our suggestion for further research is to ex-
plore whether such a relationship can be replaced by other types of citations (e.g. bibliography coupling, co-citation, or longitu-
dinal citation), term similarities or their combinations. Using alternative natural clustering algorithms (e.g. Walktrap, spinglass, or
label propagation algorithm) rather than the GN method should be also explored. These approaches may enable users to excavate
other latent intelligence from different perspectives. Finally, it is evident that additional analytical results will be obtained if users
further segment communities of a trajectory into sub-communities and track their evolution.

Fig. 9. Subject evolution diagram of T5 (power system). Note that the arrows in red represent the first sub-domain; those in blue represent the second sub-domain;
those in yellow represent the third sub-domain; the rest represents their integration.

Fig. 8. Subject evolution diagram of T3 (wireless communication system).
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