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This paper studies the underlying theory of weight-balanced mechanism for the design of a
class of spatial mobile arm support (MAS), a spring assistive MAS. Conventional designs of
spring assistive MAS and their associated spring balancing techniques are analyzed based on
the stiffness matrix analysis in order to highlight the structural novelty of the proposed MAS
design concept. This MAS comprises two ideal zero-free-length springs directly installed to the
arm mechanism without using any auxiliary link. Through the passive assistance provided by
the springs, the MAS can facilitate the arm movement in space by the complete weight
compensation of the upper limb at any possible posture. The design is believed to have
benefited from its simple structure and the easiness of adjustment compared to other
conventional designs. The conceptual design of the MAS is proposed and followed with a
simulation model. The gravity balancing is verified with an example of a quasi-static motion.
The results show that the MAS is capable of fully balancing the weights of user's upper limb
and the device during the full range of motion.

© 2012 Elsevier Ltd. All rights reserved.
Keywords:
Mobile arm support
Gravity balance
Stiffness matrix
Upper limb exoskeleton
1. Introduction

Mobile arm supports (MASs) are themechanical devices that support the weight of the arm and so provide assistance to shoulder
and elbow motions through a linkage of low friction joints [1]. MASs were originally designed to increase independence for feeding
function, but they have subsequently enabled thousands of people with upper extremity impairments to achieve other functional
activities, including grooming, hygiene, writing, telephoning, household tasks, and recreational and vocational activities [2]. Various
types ofMASs have been proposed over years, such as the foot-operated feeder by theGeorgiaWarmSprings Foundation back in 1936
[3], the Barker Feeder by E. H. Barker at about the same time, the Jaeco MAS around 1950s [4], and recently the WREX [5,6], the
ARMON [7] and the Freebal [8].

Limitations of the traditional MAS design include its conspicuous appearance, problems of doorway clearance, and the
complexity of fitting the device for individual users to engage in particular activities. Nowadays, several applicable MASs are
preferably designed in form of passive exoskeleton devices, suggesting no actuators and sensors being used, these devices can be
safer, less expensive and even lighter. The exoskeleton-type MAS design is structurally and kinematically aligned to the arm of the
user, this facilitates in navigating the arm through doorways and narrow spaces, and also, the applied assistive forces can be
transmitted more uniformly on the subject's arm.

Without actuators and sensors, gravity balancing techniques are required to passively counterbalance the gravitational forces
of the arm and the MAS itself. Passive gravity balancing technique in mechanisms is able to achieve the complete gravity
compensation at any configuration of the mechanism. A MAS with passive gravity balancing function can provide the exact
amount of support at any possible posture of the arm without overstretching it. Passive gravity balancing technique encompasses
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a variety of methods, e.g. the counterweight methods [9,10], the cam linkage methods [11,12] and the spring balancing methods
[13–19]. Among these, the spring balancing methods are particularly favorable for the MASs since spring elements can be
generally benefited from the light weight, small additional inertia, easiness for adjustments and cheap cost.

Most conventional spring balancing techniques use auxiliary links or linkages added to the mechanism to provide suitable
attachment points for the springs [15–19]. However, the auxiliary links increase the system inertia as well as its structural
complexity. This paper discloses the underlying theory of some of the famous spring balancing techniques and presents a
theoretical study for the design of a class of a spatial spring assistive MAS without using auxiliary links, which is believed to be a
novel design concept, simple in structure, and easy to be adjusted for individuals of distinct arm length and weight.

The layout of this paper is as follows. Section 2 presents the principle of gravity balancing techniques with springs. A general
gravity-spring system is described by a stiffness matrix proposed by Lin et al. [14]. In Section 3, two existing spring balancing
techniques using the auxiliary link method, which are both applied to planar 2-DOF (degree of freedom) serial kinematic chains,
are investigated. In Section 4, a planar 2-DOF spring balancing arm without using auxiliary links is proposed. In Section 5, the
planar 2-DOF design is extended to a spatial 4-DOF MAS by two additional rotational DOFs on the shoulder to accommodate the
spatial kinematics of the upper extremity. With only two embedded springs, the 4-DOF MAS is capable of achieving static balance
in spatial motion. In Section 6, a methodology for tuning the level of gravity compensation is proposed. The MAS is modeled and
simulated in ADAMS. The simulated results shown in Section 7 justify the gravity balancing capability of the design.

2. Principle of gravity balancing with springs

2.1. The stiffness block matrix representation

To generally describe the configuration of a planar n-link articulated mechanism, let qi be a unit vector fixed on link i (i=1, 2,
…, n) of the mechanism where link 1 is ground. The n-dimensional vector space spanned by q1, q2,…, qn defines the configuration
of the mechanism. In the system, assume that all springs are zero-free-length springs working within their linear ranges, and the
spring forces and the gravitational forces are conservative forces and configuration dependent. Hence, any force vector f, can be
expressed in a linear combination of qi's as
where

where
f ¼ ∑
i
Fiqi ð1Þ

Fi is a 2×2 constant coefficient matrix of qi, representing the rotation and scaling of qi.
where
Denote p as the position vector from the origin of the global coordinate system to the point where the force f is applied. For

example, if f is the gravitational force of a link and p is the position vector of the mass center of the link, p can be expressed
as
p ¼ ∑
i
Piqi ð2Þ

Pi is a 2×2 constant coefficient matrix of qi, representing the rotation and scaling of qi.
where
Hence, the potential energy contributed by the forces and their associated positions can be obtained as
U ¼ ∫fTdp ¼ ∑
i;j

qi
TKijqj ð3Þ

Kij is a 2×2 constant matrix derived from Eqs. (1) and (2) as

Kij ¼ Fi
TPj: ð4Þ
Component matrix Kij is the potential energy due to a relative angular position θij=cos−1(qi
Tqj) of links i and j, and is also

referred to as the stiffness component matrix between links i and j [14]. Hence, matrix Kij is in energy unit, e.g. N–m.
In the spring-gravity system, both the gravitational potential energy UG and the elastic potential energy UE can be expressed in

the form of Eq. (3). The total potential energy of the system UT, i.e. the sum of UG and UE, can be further written in a block matrix
form as
UT ¼ 1
2
QTKQ ð5Þ

K and Q are respectively 2n×2n and 2n×1 matrices as

K ¼ Kij

h i
ð6Þ

Q ¼ qi½ �: ð7Þ
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K and Q are respectively referred to as the stiffness block matrix and the configuration block matrix [14]. Note that, although
the configuration matrix varies as the configuration of a mechanism changes, the stiffness block matrix is constant for a
prescribed mechanism. Consider a simplified case where qi's are respectively parallel to the line connecting the joint centers on
link i in an articulated kinematic chain, and the local position vectors of all points of application, i.e., the position vectors of the
mass centers and the spring attachment points, are respectively parallel to the corresponding local unit vector qi. In this case,
matrices Fi and Pi are both 2×2 scalar matrices, and Kij=KijI where I denotes the 2×2 identity matrix. Derived from Eq. (3), the
virtual work done by all working forces acting on the mechanism during any virtual configuration change is
where

Fig. 1. D
with ele
δUT ¼ Kijδ qi
Tqj

� �
: ð8Þ
Thus,
δUT ¼ ∑
i;j;k

Kij qT
i
∂qj

∂θk
þ ∂qT

i

∂θk
qj

" #
δθk ð9Þ

θk (k=2, 3,…, n) is the joint angle of link k, and its associated coefficient is the static joint torque.
where
If i= j=k in Eq. (9), vectors qi and (∂qi/∂θi) are perpendicular, and thusqi

T ∂qi=∂θið Þ is zero. According to the principle of virtual
work, the necessary and sufficient condition for the equilibrium of a mechanism is zero virtual work done by all working forces
acting on the mechanism during any virtual configuration change. Hence, in an equilibrium system, for any i≠ j in Eq. (9), all Kij's
must be zero. That is, the stiffness block matrix becomes a diagonal matrix with all off-diagonal component matrices Kij's being
zero matrices. The potential energy is constant and independent of the configuration change of the mechanism and can be
expressed as
UT ¼ 1
2
tr KG þKEð Þ: ð10Þ

KG and KE are the respective stiffness block matrices due to the gravitational forces and the spring forces.
where
The mechanism satisfying Eq. (10) is gravity balanced, i.e., the mechanism is in static equilibrium state at any configuration.

2.2. The gravitational stiffness block matrix of a 2-DOF serial chain

Consider a model of the MAS attached to the arm constrained in a vertical plane as shown in Fig. 2 where J1 and J2 are the
revolute joint centers on the shoulder and the elbow, respectively. L is the length of the upper arm. m2 and m3 are the masses on
the upper arm and the forearm, respectively. The position vector c of the overall mass center of the upper arm and the forearm,
from reference point J1, can be derived using (m2+m3)c=m2(s2q2)+m3(Lq2+s3q3) where q2 and q3 are the unit vectors of the
upper arm and the forearm, respectively, as shown in Fig. 2. Thus,
c ¼ c2q2 þ c3q3 ð12Þ

c2 ¼ m2s2 þm3Lð Þ= m2 þm3ð Þ ð13Þ

c3 ¼ m3s3= m2 þm3ð Þ: ð14Þ
ifferent types of the existing MAS devices: (a) The original Jaeco MAS for subjects with severe shoulder girdle weakness [4]; (b) The Jaeco multi-link MAS
vation assist [4]; (c) The WREX [5].



Fig. 2. The two-link model of upper limb.
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The total gravitation potential energy of the system, according to Eq. (3), is
where
UG ¼ μgq1ð ÞTc ¼ μgc2q1
Tq2 þ μgc3q1

Tq3 ð15Þ

μ=m2+m3, −gq1 is the gravitational acceleration vector g, and −μgTq1 is the gravitational force acting on the overall
where
mass center of the system.

Since qT
i qj is a scalar, qT

i qj=(qT
i qj)T=qT

j qi. Thus, the 6×6 stiffness block matrix due to gravity can be derived from Eq. (15)
as a symmetric matrix,
KG ¼
0

1
2
μgc2I

1
2
μgc3I

0 0
sym 0

2
64

3
75: ð16Þ

‘sym’ represents the symmetric part of the stiffness block matrix.
3. Analysis of the existing planar 2-DOF spring balancing mechanisms with parallel auxiliary links

In this section, two existing spring balancing techniques are analyzed and compared based on the stiffness block matrix
methodology.
3.1. The parallelogram linkage

Utilizing a single pendulum [16,17] and a four-bar parallelogram linkage [17,20] in the spring balancing mechanisms are well
known techniques. The WREX and the Jaeco MAS both comprise a fundamental parallelogram linkage in the vertical plane for the
gravity balance. A simplified illustration for such gravity balancing mechanisms is shown in Fig. 3, where k1 and k2 are the spring
constants of the two ‘ideal’ zero-free-length extension springs. For an ideal zero-free-length spring, the spring force is
proportional to the deformed magnitude of the spring. Through a cable–pulley system or alignment shafts [16,17,20,21], the
spring length of a non-zero-free-length spring can be manipulated to match the desired spring force. Direct installation of a
normal spring can also work equivalently as a zero-free-length spring if the normal spring is operated in a preload equal to its free
length multiplied by the spring constant.
Fig. 3. The spring arrangement using the parallelogram linkage.
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The elastic potential energy of spring k1 can be written as
UE;1 ¼ 1
2
k1 b1−a1ð ÞT b1−a1ð Þ

¼ 1
2
k1 b1q2−a1q1ð ÞT b1q2−a1q1ð Þ

¼ −k1a1b1q1
Tq2 þ

1
2
k1a1

2q1
Tq1 þ

1
2
k1b1

2q2
Tq2

ð17Þ

a1=a1q1 and b1=b1q2 are the vectors pointing from point J1 to the attachment points A1 and B1, respectively.
where
The stiffness block matrix induced by spring k1 can be obtained as
KE;1 ¼

1
2
k1a1

2I −1
2
k1a1b1I 0

1
2
k1b1

2I 0
sym 0

2
6664

3
7775: ð18Þ
Due to the geometric constraint of the parallelogram, the coupler link of the parallelogram linkage remains vertical at any
configuration. The spring-loaded forearm link mounted on the vertical coupler is thus considered similar to a ground-based,
spring-loaded single pendulum. Although the attachment point A2 is not fixed on ground, vector a2 pointing from point J2 to point
A2 can be expressed as a2q1. The elastic potential energy of spring k2 can be written as
UE;2 ¼ 1
2
k2 b2q3−a2q1ð ÞT b2q3−a2q1ð Þ

¼ −k2a2b2q1
Tq3 þ

1
2
k2a2

2q1
Tq1 þ

1
2
k2b2

2q3
Tq3

ð19Þ

b2q3 is the vector pointing from point J2 to point B2.
where
Hence, the stiffness block matrix is
KE;2 ¼
1
2
k2a2

2I 0 −1
2
k2a2b2I

0 0
sym

1
2
k2b2

2I

2
6664

3
7775: ð20Þ
Having the off-diagonal component matrices K12, K13 and K23 of the summed stiffness block matrix of Eqs. (16), (18) and (20)
as zero matrices yield the design equations of the gravity balanced linkage as shown in Fig. 3 as:
−k1a1b1 þ μgc2 ¼ 0 ð21Þ

−k2a2b2 þ μgc3 ¼ 0 ð22Þ
Eqs. (21) and (22) show the advantages of the parallelogram method, in which the two spring parameters can be selected or
calibrated independently. The WREX and the Jaeco MAS use elastic bands instead of metal springs as shown in Fig. 1 which are
even lighter and less apparent. By adding two revolute joints with vertical joint axes respectively on the vertical coupler and the
base, the parallelogram can rotate about line J1A1, the forearm link can rotate about line J2A2, and the MAS can accommodate to
the spatial motion of the armwithout affecting its gravity balancing. As a result, the WREX has two DOFs on the shoulder and two
DOFs on the elbow joints. In general, the glenohumeral joint and the elbow joint of a human upper extremity are generally treated
as a 3-DOF spherical joint and a 1-DOF revolute joint, respectively, allowing the shoulder azimuth rotation, the shoulder elevation,
Fig. 4. The spring arrangement of the pantograph design.
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the shoulder roll, and the elbow flexion–extension [22–24]. Although the WREX possesses the same DOF as the human upper
extremity, shoulder roll motion is infeasible, because the parallelogram linkage must be ‘rigidly’ attached to the upper arm and be
placed in a vertical-plane. Therefore, most MASs comprising the parallelogram linkages provide the assistive force with its fixer
only on the subject's forearm as shown in Fig. 1(b) and (c). The balancing accuracy of most parallelogram MAS designs relies on
the correct setup of a1 and a2 which is also commonly perceived as a disadvantage for such parallelogram linkage MAS.

3.2. The pantograph linkage

Agrawal et al. [18] proposed an alternative arrangement of auxiliary links and springs for spring balanced mechanisms [17].
The schematic of such a balancing mechanism is shown in Fig. 4, where the auxiliary links are used to locate the mass centerM of
the system and the mechanism is topologically similar to a pantograph linkage. The link lengths of the auxiliary links are
evaluated based on the parameters c3 and (L−c2) given in Eq. (12). Since spring k1 connects the mass centerM of the system and
point A1 on ground, the elastic potential energy of spring k1 can be derived as
UE;1 ¼ 1
2
k1 c−a1q1ð ÞT c−a1q1ð Þ: ð23Þ
Substituting Eq. (12) into Eq. (23) yields
UE;1 ¼ −k1a1c2q1
Tq2−k1a1c3q1

Tq3 þ k1c2c3q2
Tq3 þ

1
2
k1a1

2q1
Tq1 þ

1
2
k1c2

2q2
Tq2 þ

1
2
k1c3

2q3
Tq3: ð24Þ
The quadratic form of Eq. (24) yields the stiffness block matrix as
KE;1 ¼

1
2
k1a1

2I −1
2
k1a1c2I −1

2
k1a1c3I

1
2
k1c2

2I
1
2
k1c2c3I

sym
1
2
k1c3

2I

2
666664

3
777775: ð25Þ
Spring k2 is fitted diagonally in the parallelogram as shown in Fig. 4. The elastic potential energy of spring k2 is derived
as
UE;2 ¼ 1
2
k2 c3q3− L−c2ð Þq2½ �T c3q3− L−c2ð Þq2½ �

¼ −k2 L−c2ð Þc3q2
Tq3 þ

1
2
k2 L−c2ð Þ2q2

Tq2 þ
1
2
k2c3

2q3
Tq3

: ð26Þ
The quadratic form of Eq. (26) yields the stiffness block matrix as
KE;2 ¼
0 0 0

1
2
k2 L−c2ð Þ2I −1

2
k2 L−c2ð Þc3I

sym
1
2
k2c3

2I

2
6664

3
7775: ð27Þ
Fig. 5. The spring arrangement of the non-auxiliary-link design.



Fig. 6. The two-link model with 3 DOF on the shoulder joint and 1 DOF on the elbow.
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Summing the stiffness block matrices Eqs. (16), (25) and (27) and letting the off-diagonal component matrices be zero
matrices, the design equations of the system are derived as:
and
−k1a1 þ μg ¼ 0 ð28Þ

k1c2−k2 L−c2ð Þ ¼ 0: ð29Þ
Since Eq. (29) is obtained by K23=0, it suggests that a spring-to-spring balancing in the elbow flexion–extension (θ3−θ2)
exists, and hence the two spring constants k1and k2 cannot be determined independently. Such pantograph balancing
mechanisms are particularly useful while joint J1 is either a revolute joint or a spherical joint. Since spring k1 is attached to the
mass center M, rotating the mechanism about line J1M does not change the spring length A1M, and consequently, neither the
elastic potential energy nor the gravitational potential varies. This pantograph balancing mechanism was applied to a leg orthosis
for gait training exercises [25]. Note that, since the lengths of the parallel links, namely c3 and (L−c2), depend on the prescribed
m2 and m3, the lengths of the parallel links are required to be adjusted to achieve an accurate balance according to the mass ratio
of the upper arm and the forearm of an individual.

4. The planar 2-DOF spring balancing mechanisms without auxiliary links

A MAS with auxiliary links comprises closed-loop geometry in kinematics. It is robust in structure since the internal forces can
be distributed by a number of links. However, arrangement of the auxiliary links in the system to prevent motion interference can
be complicated. Besides, the closed-loop kinematic chain may reach to an uncertainty configuration when the links within the
closed-loop are all collinear. In this section, a design without using auxiliary links is proposed.

Based on Eq. (16), as the non-zeroK13 of the stiffness blockmatrix is to be eliminated, a spring can be directly fitted between links
1 and 3 as shown in Fig. 5. The elastic potential energy and its associated stiffness blockmatrix can be derived, respectively, as
UE;1 ¼ 1
2
k1 Lq2 þ b1q3−a1q1ð ÞT Lq2 þ b1q3−a1q1ð Þ

¼ −k1a1Lq1
Tq2−k1a1b1q1

Tq3 þ k1Lb1q2
Tq3 þ

1
2
k1a1

2q1
Tq1 þ

1
2
k1L

2q2
Tq2 þ

1
2
k1b1

2q3
Tq3

ð30Þ

KE;1 ¼

1
2
k1a1

2I −1
2
k1a1LI −1

2
k1a1b1I

1
2
k1L

2I
1
2
k1Lb1I

sym
1
2
k1b1

2I

2
666664

3
777775: ð31Þ
Since the installation of spring k1 results in a non-zero K23, another spring is required to compensate the effect due to spring
k1. Thus, spring k2 is fitted between links 2 and 3 with J2A2

→ ¼ a2q2 and J2B2
→ ¼ b2q3 as indicated in Fig. 5. The elastic potential energy

of spring k2 and its associated stiffness block matrix are expressed, respectively, as
UE;2 ¼ 1
2
k2 b2q3−a2q2ð ÞT b2q3−a2q2ð Þ ¼ −k2a2b2q2

Tq3 þ
1
2
k2a2

2q2
Tq2 þ

1
2
k2b2

2q3
Tq3 ð32Þ
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KE;2 ¼
0 0 0

1
2
k2a2

2I −1
2
k2a2b2I

sym
1
2
k2b2

2I

2
6664

3
7775: ð33Þ
By summing the stiffness block matrices of Eqs. (16), (31) and (33), and by having the off-diagonal component matrices K12,
K13 and K23 to be zero matrices, design equations can be obtained as:
−k1a1Lþ μgc2 ¼ 0 ð34Þ

−k1a1b1 þ μgc3 ¼ 0 ð35Þ

k1Lb1−k2a2b2 ¼ 0: ð36Þ
Springs k1 and k2 are referred to as a bi-articular spring and a mono-articular spring, respectively, according to the
corresponding number of joints for which a spring is spanning over between the two attachment points. However, a bi-articular
spring sometimes is required to transverse a potentially large workspace, and such a spring may be difficult to be obtained and
manufactured. Thus, a trial-error process for determining the suitable spring constants and the reasonable spring attachment
points is required. Without using parallel auxiliary links, this design requires generally less number of links and thus has a lighter
weight. The adjustment of the upper arm length L is comparatively easier to achieve, while compared with a parallelogram
linkage. Note that, the non-zero K23 induced by spring k1 can also be compensated by another bi-articular spring k2 fitted between
links 1 and 3. However, such spring arrangement induces the coupled effects of the two springs. This indicates that either an
imprecise spring constant k1 or k2 affects the gravity balancing on both the shoulder and the elbow motion.

5. Gravity balancing of the spatial 4-DOF spring assistive MAS

Design of a spatial 4-DOF MAS is proposed based on the spring arrangement of the planar 2-DOF spring balancing mechanism
as shown in Fig. 5. By adding two extra rotational DOFs on the shoulder joint J1 of the design, the MAS has a total of 4 DOFs. The
gravity balancing of the spatial MAS is proved as effective as its planar case as follows.

As shown in Fig. 6, the upper arm and the forearm are lying in the xy-plane, and the spring attachments are the same as those
in Fig. 5. The equivalent spherical joint J1 can tilt the xy-plane with two independent rotations: Rotation ψ of the xy-plane about a
vertical axis passing through point J1; Rotation ϕ of the xy-plane about line J1M. During the angular motion of ψ, the gravitational
potential energy and the elastic potential energy are both constant since the altitudinal positions of the mass center M and all
spring attachment points are not elevated or lowered during the motion.

During the angular motion of ϕ, the gravitational potential energy and the spring length of k2 is kept constant. As shown in
Fig. 6, if the attachment point B1 of spring k1 is on line J1M, the spring length of k1 can also be kept constant during the rotation ϕ.
Fig. 7. Functional schematic of the spring assistive MAS.



Table 1
The Denavit–Hartenberg parameters of the arm linkage (di: the common normal between axes xi and xi−1; ei: the common normal between
axes zi and zi−1; αi: the angle measured from axis zi−1 to axis zi about axis xi; θi: the joint angle from axis xi−1 to axis xi about axis zi−1).

Frame i ei αi di θi

1 0 −π/2 −d1 θ1
2 0 3π/2 −d2 θ2
3 L 0 0 θ3
4 e 0 0 θ4
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As a result, the constant elastic potential energy of both springs k1 and k2 satisfies the static equilibrium. According to the design
equations of the planar 2-DOF spring balancing mechanism, dividing Eq. (34) with Eq. (35) yields
where
L
b1

¼ c2
c3

: ð37Þ
Vector J1B1
→ ¼ b can be expressed as
b ¼ Lq2 þ b1q3 ¼ ρc2q2 þ ρc3q3 ð38Þ

ρ is a constant ratio according to Eq. (37) as

ρ ¼ L
c2

¼ b1
c3

: ð39Þ
Judiciously from Eqs. (12) and (38),
b ¼ ρc: ð40Þ
Since b is parallel to the mass center position vector c, point B1 is on line J1M, the design equations of Eqs. (34)–(36) are
satisfied, and gravity balancing during motion ϕ can be achieved.

The third rotation θ of joint J1 induces the planar motions of the upper arm and the forearm in the xy-plane. As defined in Fig. 5,
vectors q1, q2 and q3 are in the xy-plane while vectors g and J1A1

→ ¼ a1 remain vertical. Given the tilted xy-plane, projection of the
gravitational acceleration vector g on the xy-plane is
gt ¼ g cosϕ: ð41Þ
The gravitational acceleration vector of the projective model constrained to the xy-plane is gt. The projected position vector of
the attachment point A1 is
at;1 ¼ a1 cosϕ: ð42Þ
The design equations of this projective model are identical to Eqs. (34)–(36) except for a multiplication factor of cos ϕ.
Therefore, by additionally adding two rotational DOFs on the shoulder joint J1, the static equilibrium state of the spatial 4-DOF
MAS, constructed with all three rotations of the glenohumeral joint and one rotation of the elbow joint with two ideal
zero-free-length springs, can be accomplished.

6. Adjusting gravity balancing of the spring assistive MAS

Since people have arms of different mass, calibration strategy is required to achieve a fine gravity balancing. In addition, some
subjects may be able to withstand a portion of their limb weights and do not need a complete gravity balancing. Hence, the design
parameters of the MAS to suit for any prescribed mass and dimension are derived and the adjustment strategy of gravity
balancing of the MAS is also proposed.

Intuitively, the level of spring force can be managed by altering the spring stiffness or the positions of the spring attachment
points. Since the WREX utilizes rubber bands as the spring elements, the desired spring constants can be adjusted simply by
adding or removing a number of the rubber bands connected in parallel. However, for conventional metal springs, the adjustment
Table 2
Anthropometric parameters of the upper limb (data given in kg and m).

Upper arm m2=2.18 s2=0.210 L=0.332
Forearm m3=1.85 s3=0.157



Table 3
Spring design parameters (data given in N/m and m).

Spring 1 k1=600 a1=0.053 b1=0.090
Spring 2 k2=800 a2=0.100 b2=0.224
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is preferably achieved by moving the spring attachment points to desired positions. According to the design equations given in
Eqs. (34)–(36), the design parameters of each spring attachment point can be derived as
a1 ¼ gc2
k1L

� �
μ ð43Þ

b1 ¼ c3L
c2

ð44Þ

a2b2 ¼ k1c3L
2

k2c2
: ð45Þ
According to Eq. (43), the distance between the attachment point A1 and joint center J1, or a1, is the only parameter related to
the systemmass μ. By linearly displacing the attachment point A1 to other positions, the gravity balancing of distinct levels can be
adjusted precisely and quantitatively.

Adjusting gravity balancing of this proposed design is comparatively easier than that of the pantograph balancing mechanism
because it requires changing only one spring attachment point. While the spring parameters of the two springs in the
parallelogram balancing design are both dependent on μ as indicated in Eqs. (21) and (22), simultaneous change of the positions
of the attachment points of the two springs is required.

7. The spring assistive MAS design

7.1. Schematic of the mechanical assembly

Human shoulder is a complex joint exhibiting a variety of movements through the glenohumeral joint and the shoulder girdle
movement [26,27]. The shoulder motion is not exactly equivalent to a spherical joint motion. The rotation center of the
glenohumeral joint changes its position more significantly during the high elevating motion of the upper arm [26,28]. In order to
achieve a rigid attachment of an exoskeleton to the upper arm, Stienen et al. [29] proposed to mount the upper extremity
exoskeleton device on a movable base so that an upper extremity exoskeleton possesses a total number of 6 DOFs at the shoulder
joint to accommodate the three rotations and three translations of the glenohumeral joint.

Fig. 7 schematically shows the mechanical assembly of the MAS. The scapular linkage is to be mounted on a wheelchair, and it
comprises a statically balanced parallelogram linkage to provide the moving mount for the shoulder joint J1 and the spring
attachment point A1. Constituting of two vertical rotation axes z′1 and z′3 and one horizontal rotation axes z′2 as indicated in Fig. 7,
Fig. 8. The time history of the potential energies.
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the scapular linkage provides a 3-DOF translation of the shoulder joint J1. With such a linkage, the upper arm link has six DOFs
with respect to the fixed frame. Hence, the upper arm link can be attached rigidly on the human upper arm without confining its
motion even when the rotation axes of the shoulder joint J1 is not perfectly aligned with the rotation axes of the glenohumeral
joint. With the 3-DOF scapular linkage and the 4-DOF MAS linkage, a 7-DOF spatial spring assistive linkage is constructed. The
MAS linkage has a total of four DOFs with rotation axes z0, z1, z2 and z3 in a serial connection, and the associated Denavit–
Hartenberg parameters [30] are listed in Table 1.

Note that, since precise alignment between the human elbow joint axis and the joint axis of the device has been difficult [29],
misalignment of the joints may cause uncomfortable or even painful feeling to the users due to the soft-tissue depression near the
attachments [29,31]. A compensation strategy can be made through changing the position of the revolute joint axis z3 to a proper
location. Moreover, in practice, the perfect coincidence of the joint axes z0, z1 and z2 to the human glenohumeral joint center J1 is
also difficult to achieve, and such arrangement of the joint axes may restrict the range of the horizontal rotation about z1 or induce
motion interference between the scapular link and the upper arm link of the MAS, especially when the upper arm is highly
elevated. It is suggested that the joint axis z0 can be shifted toward the back side of the human body, as indicated in Fig. 7, to avoid
motion interference. This way, only joint axes z1 and z2 need to be aligned and alignment of these two joint axes can be achieved
through the adjustment of the affixed position of the MAS to the upper arm.

7.2. Simulation

Simulation of the spring assistive MAS is based on a simplified 2-link model, jointed with J1 and J2, of the spring assistive MAS
given in Fig. 7, where joint J1 is a spherical joint mounted on ground. In the 2-link model based on the anthropometric and the
statistic data [32–34], the dimensional and inertia parameters of the upper limb are listed in Table 2. Accordingly, design
parameters of the attached springs can be obtained using Eqs. (43)–(45) and the results are listed in Table 3.

The simulations are implemented in software ADAMS. Angular displacements of the three rotations on the shoulder and the
elbow flexion–extension are prescribed to achieve a combing hair motion, a common activity of daily living (ADL) [35], from a
rested position where the upper arm and the forearm are, respectively, in vertical and horizontal orientations as their initial
configuration. Since the dynamic effect and the muscular compliance force are assumed negligible in the slow operation of the
MAS, the static-mode simulation is utilized. The interference effects were also neglected. The time history of the gravitational
potential energy and the elastic potential energy are plotted in Fig. 8, where the total potential energy of the system is constant
during the grooming motion and all static torques sustaining the weight of the upper limb are zero. The maximum spring forces
induced by springs k1 and k2 are 237 N and 233 N, respectively, which fit in a reasonable range. The maximum forces supported
by the bearings of the elbow joint and the shoulder joint are 198 N and 197 N, respectively.

8. Conclusion

Spring balancing mechanism encompasses a variety of methods to arrange the configuration of the spring connections. Each
arrangement has its own advantages and disadvantages over a particular application. This paper investigates the underlying
theories of some existing spring balancing mechanisms. Comparisons of the parallelogram design, the pantograph design and the
non-auxiliary-link design are also discussed. A novel non-auxiliary-link design of a spring assistive MAS with a simpler structure
and easiness for the adjustments is proposed. In the non-auxiliary-link design, its physical interaction among the spring forces
and the gravitational forces is similar to the pantograph design. The primary spring is connected from the base to the forearm link
accomplishing the major weight balance of the mechanism, and the secondary spring has been used for the spring-to-spring
balance in the elbow motion. Since the design parameters of the two springs have coupled effects, the spring-to-spring balancing
results in an additional design equation, and thus the free design parameters in the proposed MAS design are less than those in
the parallelogram design by one. However, this design is advantageous in adapting to different levels of gravity balancing. The
gravity balancing of the proposed MAS is verified through a static-mode simulation of ADAMS that was carried out over a sample
motion of the MAS.
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