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This paper presents a design methodology to determine spring configuration on statically
balanced planar articulated manipulator. From the energy perspective, the summation of
potential energies remains constant at any configuration. The gravitational potential energy
changes due to the movement of linkages, and the elastic potential energy corresponds to the
spring configuration. By formulating similar representation of matrix form, the equilibrium
equation is simplified as the summation of gravitational stiffness block matrix and elastic
stiffness block matrices remain unchanged. This paper discusses the distribution features of
entries in gravitational stiffness block matrix, the characteristic of elastic stiffness block matrix
associated with the attachment angles and attachment points of the spring, and the equivalent
spring installations that produce same elastic potential effect but with different design
parameters or configurations. According to the interrelation between gravitational and elastic
stiffness block matrix, the general criteria of the admissible spring configuration are obtained.
For minimum number of springs and minimum total number of articulated joints that springs
span over, the additional criteria and admissible spring configurations are derived. A
three-degree-of-freedom planar articulated manipulator is shown as an illustrative example.
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1. Introduction

Statically balanced system has been much debated in the last few decades. A mechanism is statically balanced if it maintains
static equilibrium at any configuration without actuator working against gravity. Therefore, statically balanced mechanism is
efficient and easily controlled. It is consequently expensively applied to existing systems, such as dentist light, equipoised lamp,
excavator, crane, prosthesis [1] and orthoses in human rehabilitation [2,3].

Over the years, several methods have been proposed to achieve static balance. The counterweight method and the
spring-balancing method are two of the most commonly employed. Counterweight method [4], which is simple and directly
perceived through senses, utilizes additional inertia to counterbalance the gravitation. Nonetheless, counterweight method is not
practical as the heavier the mechanism, the lager amount of additional inertia has to be added. To maintain identical amount of
input torque [5], the spring-balancing method obtains academic values using springs, with little of additional inertia, to absorb the
change in the gravitational potential energy due to the movement of linkages. That is to say, the total conservative energy remains
constant, and the gravitational potential energy (Ug) and elastic potential energy (Us) can be entirely transferred at any
configuration, which can be represented as Eq. (1).
Ug þ Us ¼ U ¼ constant: ð1Þ
Oneof the approaches for spring-balancingmethods is to install springwith auxiliarymechanism. Previously, auxiliary linkages are
used tomake sure that the barwith springs attached remains vertical, so that each link, which corresponds to a four-bar parallelogram,
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can be regarded as a simplest 1-DOFmanipulator. For an n-linksmanipulator with (n − 1)-DOF, general solution is then derived [6,7].
While the auxiliary parallelograms are applied to locate the center of mass, the springs are attached to center of mass in order to
keep spatial mechanism in static balance [8,9]. However, when adding auxiliary linkages, there may be the interference of
linkages and problem of mechanical tolerance in manufacturing. Hence, another approach, direct spring installation, has
consequently become popular [3,10–18]. Although direct spring installation has been developed for several years and have
already applied to practical devices [14,15], most research focused on specific mechanisms to achieve their objectives. Rather
little has been studied on the determination of spring configuration. A feasible spring configuration of 1-DOF planar linkages
[16] and minimum number of spring planar articulated manipulator [17] have been proposed by Lin et al.

This paper examines spring installation configuration from the interrelations between elastic potential effect of spring and
gravitational potential effect of manipulator. The contributions of installation type of spring, attachment angles and attachment points
of the spring installation to the static balancing are explored. The general criteria for determining feasible spring configuration of n-link
statically balanced planar articulated manipulator are proposed accordingly. With such characteristics of elastic potential effect of
spring and the general criteria for spring configuration determination, the additional criteria and the admissible configuration matrix
with respect to an arbitrary design objective can be easily derived.

The proposed method in this paper is based on the stiffness matrix approach [17,18]. However, the coordinate system is
redefined, and the stiffness block matrix is amended to be same unit as the spring constant, without multiplying lengths of link,
which is physically identical as Hooke's law. In addition, this paper shows more possibilities of spring installation configuration,
since the spring constant k is not predetermined and the number of springs fitted between each two links is not limited to less
than or equal one. Without these two constraints, the number of admissible configuration matrix with minimum spring number
generated in this paper is much more than that of proposed in [17].

The structure of the paper is as follows. Sections 2 and 3 derive the formulation of the elastic potential energy and gravitational
potential energy represented by the stiffness block matrix respectively. Within the same matrix form of representation, in
Section 4, based on the statically balanced condition, the equilibrium of conservative energy, as shown in Eq. (1), is simplified as
the summation of gravitational stiffness block matrix and elastic stiffness block matrices, which is equal to a constant stiffness
block matrix. In Section 5, in order to figure out the interrelations between gravitational stiffness block matrix and elastic stiffness
block matrix, the characteristics of elastic stiffness block matrix according to the type of spring, attachment angles, and the
attachment points are explored; equivalent spring installations that produce same elastic potential effect are discussed. Section 6
develops the general criteria of the admissible spring configuration for the design of an n-link statically balanced planar
articulated manipulator. In Section 7, the additional criteria and the admissible configuration matrix for two specific objective
functions are determined; one minimizes the number of springs and the other minimizes the number of articulated joints which
springs span over. Section 8 shows illustrative examples of a three-DOF statically balanced planar articulated manipulator with
both design objectives. The conclusion is drawn in Section 9.

2. Elastic stiffness block matrix representation of elastic potential energy

The coordinate system of an n-link planar articulated manipulator is defined, as shown in Fig. 1, which is different from that of
suggested by Lin et al. [18]. The Denavit–Hartenberg representation [19] is applied. The Cartesian planar coordinate frame is
supposed to each local coordinate system, hence the unit axes xj and yj are orthonormal vectors. Each succeeding coordinate
Fig. 1. Coordinate systems of an n-link planar articulated manipulator.
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system with respect to its preceding coordinate system can be represented by a 2 × 2 rotation matrix R(θ), where θ = θj is the
joint angle from the xj − 1 axis to the xj axis. Therefore, once a link rotates, the coordinate systems of the link and all succeeding
links would change accordingly.

For a statically balanced planar articulated manipulator, a spring configuration matrix Λ, a n × nmatrix, is defined to represent
the configuration of spring installation [17]. Λ = [λuv], where element λuv lies in the row u, column v stands for the number of
springs fitted between links u and v. Due to symmetry and redundancy, only the upper triangular spring configuration matrix is
considered.

As shown in Fig. 2, a spring with spring constant kik, fitted in between links i and k of an n-link manipulator is denoted by
λik = 1. aik and bik are vectors from the joints of links i and k respectively to the attachment points of the spring, which can be
expressed as:
which

where
aik ¼ Aikri ¼
aik

ri
R αik
� �

ri ð2Þ

bik ¼ Bikrk ¼
bik

rk
R βik
� �

rk: ð3Þ
Aik and Bik are the transformation matrices of a ik and b ik respectively. rj is the direction vector of link j. R(αik) and R(βik) are
2 × 2 rotation matrices, α ik and βik are the attachment angles from the line passing through joint of link i to vector aik and from
the line passing through joint of link k to vector b ik respectively. Further, it is defined that both a ik and b ik cannot be equal to zero.
Since the zero-free-length springs are utilized, the distance between two attachment points |xik| can be regarded as the elongation
of spring [18].

By expressing each vector as the form of a transformation matrix times a direction vector as Eqs. (2) and (3), the elastic
potential energy is derived as:
Uik ¼ 1
2
kikxik

T
xik ð4Þ

can be arranged as

Uik ¼ 1
2

x1
r2
⋮
r j

⋮
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2
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: ð6Þ
Fig. 2. A spring fitted between links i and k of a planar articulated manipulator.
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K ik is named the elastic stiffness block matrix. For the reason that Kuv
ik is the transpose of K vu

ik , and only the upper triangular
matrix is considered as represented [18]. Entries Kuv

ik with u ≠ v in off-diagonal K ik,
and en
Kik
uv ¼

−kikAikT ¼ −kik
aik

ri
R −αik
� �

u ¼ i; v ¼ iþ 1; …; k−1 að Þ

−kikAikTBik ¼ −kik
aik

ri

bik

rk
R βik−αik
� �

u ¼ i; v ¼ k bð Þ
kikI u; v ¼ iþ 1; …; k−1 cð Þ
kikBik ¼ kik

bik

rk
R βik
� �

u ¼ iþ 1; …; k−1; v ¼ k: dð Þ

8>>>>>>>>>><
>>>>>>>>>>:

ð7Þ

tries Kuv
ik with u = v on the diagonal of K ik,

K ik
uv ¼

kikAikTAik ¼ kik
aik

ri

 !2

I u ¼ v ¼ 1 að Þ

kikI u ¼ v ¼ iþ 1; …; k−1 bð Þ

kikBikTBik ¼ kik
bik

rk

 !2

I u ¼ v ¼ k: cð Þ

8>>>>>>><
>>>>>>>:

ð8Þ

I is a 2 × 2 identity matrix. According to Eqs. (6), (7a–d) and (8a–c), Kik can be shown as a function of spring parameters as
where
follows,
Kik ¼ f kik;
aik

ri
;

bik

rk
; αik

; βik
;

 !
¼ Kik

uv

h i
: ð9Þ
The elastic stiffness block matrix is the function of spring constant, the ratio of the distance from the joint to the
attachment point of spring and the length of the links which the spring attaches on, and the attachment angles. Each
component matrix of the elastic stiffness block matrix shows the effect of the spring between two links, which is
represented by a spring constant times dimensionless distance parameters, showing more physical implication than
that of proposed in the original stiffness matrix approach [18]. Notice the special case for ground-attached springs that
i = 1
a1k ¼ A1kx1 ¼ a1kR α1k
� �

x1: ð10Þ
Hence, Eqs.(7a,b) and (8a) are varied. According to Eq. (10), since the unit vector of base coordinate system x1 is orthogonal to
the gravitational acceleration vector, the representation of attachment angle α1k of ground-attached springs is 90° different from
that of springs that is not attached to the ground. However, the distribution feature and the characteristic of equivalent spring
installation discussed in the following sections are still applicable.

3. Gravitational stiffness block matrix representation of gravitational potential energy

Referring to an n-link planar articulated manipulator as shown in Fig. 1, mj represents the mass of link j, and the position
vector of mass center of link j denoted by pj can be expressed as:
p j ¼
X j−1

w¼2
rw þ s j ð11Þ

he direction vector of link w. sj stands for the vector from the joint of link j to the mass center of link j, which can be
rw is t
expressed as:
s j ¼ sjR δ j

� �
x j ¼ D jr j ð12Þ

D j ¼
s j
r j
R δ j

� �
ð13Þ
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R(δj) is a 2 × 2 rotation matrix, δj is the angle from xj axis to vector sj, and Dj is the transformation matrix of sj. The
where
gravitational acceleration vector g can be represented as the form similar to Eq. (12) with D1, the transformation matrix of g,
as:
g ¼ −gy1 ¼ D1x1 ð14Þ

D1 ¼ gR
3π
2

� �
: ð15Þ
By Eq. (11) and expressing vectors as the form of a transformation matrix times a direction vector as Eqs. (12) and (14), the
gravitational potential energy is derived as:
Ug ¼ −
Xn

j¼2
mjg

Tp j ð16Þ

can be arranged as

Ug ¼
Xn

j¼2
x1

TKg
1 jr j ð17Þ

Kg
1 j ¼ D1

T −mjD j−
Xn

w¼ jþ1
mwI

� �
: ð18Þ
Since the summation term in Eq. (17) is a scalar function, the gravitational potential energy Ug shown in Eq. (17) can be
further expressed [17] as
Ug ¼ 1
2
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K1j
g is shown in Eq. (18). Kg is called the gravitational stiffness block matrix. Due to its symmetry [18], Kg can be expressed
where

as a symmetric block matrix as shown in Eq. (20), that only the upper triangular matrix is considered. According to
Eqs. (18)–(20), each component matrix K1j

g in gravitational stiffness block matrix Kg represents the quantity of gravitational effect
that acts between ground and link j. Hence, Kg has non-zero component matrices only in the first row of off-diagonal matrix as
shown in Eq. (20). In addition, the magnitude of these n − 1 component matrices are distinct to each other in an ascending order
from j = n to j = 2. According to Eqs. (18) and (20), Kg is the function of manipulator parameters as
Kg ¼ f mj; δ j;
s j
r j

 !
¼ Kg

1 j

h i
: ð21Þ
4. Statically balanced condition

According to the law of conservative energy as shown in Eq. (1), where the summation of elastic potential energy is due to
total number of N springs, the total potential energy remains unchanged regardless of the configuration of manipulator is. By
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formulating both gravitational potential energy and elastic potential energy as shown in Eqs. (5) and (19) respectively, the total
potential energy under statically balanced condition can be expressed as
U ¼ 1
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¼ constant: ð22Þ
Because of the same form of representation of both gravitational potential energy and elastic potential energy, the equation
can be simplified as
Kg þ
X

N
K ik ¼ K ¼ Kuv½ � ð23Þ

K is a constant stiffness block matrix and Kuv is the stiffness component matrix of overall system between links u and v.
where
A variable relative angular position Δ(∑w = u

v − 1 θw) results the change in potential energy to the system corresponding to Kuv.
Hence, for a statically balanced system, the off-diagonal terms in K have to be zero. In other words, for a constant stiffness block
matrix K, non-zero terms only appear on the main diagonal. While discussing the spring installation configuration of statically
balanced manipulator, only the off-diagonal terms of upper triangular matrix of K g and K ik are considered in comparison.

Since the manipulator parameters are known, according to Eq. (21), the gravitational potential energy is fixed. In order to
satisfy the condition of static balancing, springs are installed to generate the elastic potential effect to compensate the
gravitational potential effect of the manipulator. That is, the corresponding K ik for each spring is designed to zero the off-diagonal
terms of upper triangular matrix of K g. Thus, the spring installation configuration associated with the elastic stiffness block
matrices can be determined.

Generally, the mass center of links is aligned on the line passing through the joints of links. In this paper, parameter δj in
Eqs. (12) and (13) is assumed to be zero. Eq. (18) can be arranged as:
Kg
1 j ¼ −

s j
r j
mj þ

Xn
w¼ jþ1

mw

!
gI′:

 
ð24Þ
All component matrices in Kg result in uniform form of a negative value times a matrix as:
I ′ ¼ 0 −1
1 0

� �
: ð25Þ
To balance the off-diagonal matrix of Kg, Eqs. (20) and (24), ground-attached springs must be installed with α1k equal to 90° or
270° and β1k equal to 0° or 180° according to Eqs. (6), (7a–d), (8a–c), while springs are not attached to ground, the strings have to
be embedded with αik and βik equal to 0° or 180°. According to Eq. (7a–d), for ground-attached spring with i = 1, entries Kuv

1k in
the off-diagonal matrix of K1k can be arranged as:
K1k
uv ¼

−k1kA1kT ¼ −k1ka1k sin −α1k
� �

I′ u ¼ 1; v ¼ 2; …; k−1 að Þ

−k1kA1kTB1k ¼ −k1ka1k
b1k

rk
sin β1k−α1k
� �

I′ u ¼ 1; v ¼ k bð Þ
k1kI u; v ¼ 2; …; k−1 cð Þ
k1kB1k ¼ k1k

b1k

rk
cos β1k
� �

I u ¼ 2; …; k−1; v ¼ k: dð Þ

8>>>>>>>>><
>>>>>>>>>:

ð26Þ
For springs not attached to the ground with i ≠ 1, entries Kuv
ik in the off-diagonal matrix of Kik are shown as:
Kik
uv ¼

−kikAikT ¼ −kikaik cos −αik
� �

I u ¼ i; v ¼ iþ 1; …; k−1 að Þ

−kikAikTBik ¼ −kikaik
bik

rk
cos βik−αik
� �

I u ¼ i; v ¼ k bð Þ
kikI u; v ¼ iþ 1; …; k−1 cð Þ
kikBik ¼ kik

bik

rk
cos βik
� �

I u ¼ iþ 1; …; k−1; v ¼ k: dð Þ

8>>>>>>>>><
>>>>>>>>>:

ð27Þ
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Likewise, all component matrices in Kik result in a value times a matrix I′ or I. Hence, only the value of each component matrix
has to be considered while comparing the off-diagonal terms of upper triangular matrix of Kg and Kik under statically balanced
condition.

5. Elastic potential effect of spring

Topics on design parameters, such as the attachment angles and attachment points of the spring installation, influence the
elastic potential effect, and the equivalent spring installations that produce same elastic potential effect that are discussed in the
following paragraphs.

5.1. Distribution feature of entries in elastic stiffness block matrix

A spring attached to a set of unconnected links that spans over multiple articulated joints is called a multi-articular spring.
Among which, springs spanning over two articulated joints are bi-articular springs; springs spanning over three articulated joints
are tri-articular springs, and so forth. Through Eqs. (6), (7a–d), and (8a–c), each component matrix represents the elastic
potential between each two links. Attaching a multi-articular spring between links i and k, corresponding to λik in Λ equals to 1,
causes elastic potential effect between links i and k. Hence, the non-zero component matrices are contributed in K ik from the row
i to row k and from column i to column k. Regardless of joint number that a spring crosses by, K ik only possesses non-zero
component matrices with six distinct values as shown in Fig. 3 labeled with different shades. To achieve static balancing, only
off-diagonal stiffness component matrices are shown in solid shade, which has to be taken into account. Therefore, only four
distinct non-zero component matrices are actually considered.

If a spring is installed between two adjacent links which spans over only one articulated joint, it is called a mono-articular
spring. Mono-articular spring corresponds to three distinct non-zero component matrices, as well as Eqs.(7b) and (8a,c), in
the elastic stiffness block matrix Kik. Only the one lies in the off-diagonal elastic stiffness block matrix is actually considered, as
shown in Fig. 3(b). The number of mono-articular springs corresponds to the super-diagonal elements in the spring configuration
matrix Λ.

Under the assumption that the mass center of links is aligned on the line passing through the joints of links, the four distinct
values of non-zero component matrices can be discussed in two separate parts, signs and magnitudes. The sign of the value of
non-zero component matrices is determined by the attachment angles of springs αik and βik, and the difference in magnitude of
the value of non-zero component matrices corresponds to the attachment points of the spring.

Referring to the effect of attachment angles, there are four kinds of distribution features of positive and negative signs in Kik,
where (αik, βik) equals to (0°, 0°), (0°, 180°), (180°, 0°), and (180°, 180°) as shown in Fig. 4. αik = 0° leads to negative signs which
appear in the off-diagonal first non-zero row, while βik = 180° results in negative signs, which contribute to the off-diagonal last
non-zero column. For both αik = 0° and βik = 180°, the value of component of elastic stiffness block matrix is located in the first
non-zero row, in the last non-zero column which is positive. For ground-attached spring, according to Eq.(26a,b), the attachment
angle α1k has a difference of 90° for contributing same signs of the values of non-zero terms in elastic stiffness block matrix.

Consider the distribution of magnitude of values of non-zero component matrices in Kik as shown in Fig. 5. When both sign
andmagnitude of values in Kik are discussed, there are three special cases of distribution feature. For a spring attached on the joint
of link i, aik equals to ri and (αik, βik) equals to (180°, 0°) or (180°, 180°), the non-zero terms result in two among four distinct
component matrices. Its distribution feature is shown in Fig. 6(a). For a spring installed on the joint of link k, bik equals to rk and
(αik, βik) equals to (0°, 0°) or (180°, 0°). Similarly, the non-zero terms result in only two among four distinct component matrices
as represented in Fig. 6(b); for one end of the spring attached on the joint of link i and the other installed on the joint of link k, aik

equals to ri, and bik equals to rk at the same time, and (αik,βik) equals to (180°, 0°), contributing to only single type of off-diagonal
non-zero terms, as shown in Fig. 6(c).
Fig. 3. Distribution features of non-zero component matrices in elastic stiffness block matrix according to the type of spring: (a) multi-articular spring;
(b) mono-articular spring.

image of Fig.�3


Fig. 4. Distribution features of signs of the values of non-zero terms in elastic stiffness block matrix according to the effect of attachment angles (αik,βik).
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5.2. Equivalent spring installation

For mono-articular springs, according to Eq.(7b), regardless of the installation angles αik and βik, the only off-diagonal
component matrix Kik

ik remains identical if βik − αik is constant. When this condition is satisfied, springs with different installation
angles, as shown in Fig. 7, produce identical elastic potential effect. For instance, under the assumption that mass centers align
along the line passing through the joints of links, installing a (0°, 0°) mono-articular spring is equivalent to embedding a (180°,
180°) mono-articular spring, and installing a (0°, 180°) one is equivalent to embedding a (180°, 0°) one; for ground-attached
Fig. 5. Distribution of magnitude of values of non-zero terms in elastic stiffness block matrix.

image of Fig.�4
image of Fig.�5


Fig. 6. Special cases of distribution features of non-zero terms in elastic stiffness block matrix with specific attachment points and attachment angles of springs.
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springs, a mono-articular spring with (90°, 0°) is equivalent to that of with (270°, 180°), and a (90°, 180°) mono-articular spring is
equivalent to a (270°, 0°) one.

Installing only one spring between two links is called single installation. Attaching more than one spring between two
identical links is said to be multiple installation. Among which, embedding two springs between identical two links is double
installation; installing three springs between same two links is triple installation, and so on. Based on former analyses, installing
two springs between links i and k can be equivalent to attaching a spring between links i and k and another spring between links
i + 1 and k as shown in Eq. (28a). This is because such two single installations can produce same elastic potential effect as a
Fig. 7. Equivalent mono-articular springs.

image of Fig.�6
image of Fig.�7
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double installation by possessing different spring constant, attachment points, or attachment angles. In Eq. (28a), the single
installation corresponding to λ(i + 1)k = 1 is restricted to the springs with design parameters aik = ri and (αik,βik) = (180°, 0°) or
(180°, 180°), as the special case shown in Fig. 6(a). There is a similar characteristic for installing a spring between links i and k and
another between links i and k − 1, as shown in Eq. (28b). The single installation corresponding to λi(k − 1) = 1 is restricted to the
springs with design parameters bik = rk and (αik,βik) = (0°, 0°) or (180°, 0°), the special case shown in Fig. 6(b). The equality
which two single installations as shown in Eq. (28a) is equivalent to that of as shown in Eq. (28b) holds if and only if Eqs. (28a)
and (28b) are associated with same non-zero terms in summation of elastic stiffness block matrices. For example, for three
adjacent links, installing a mono-articular spring and a bi-articular spring on link a, as shown in Fig. 8(a), is equivalent to
installing those on link c, as shown in Fig. 8(b).
¼

0
⋱ 2

⋱
⋱

⋱
0

2
6666664

3
7777775

⇔ ¼

0
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⋱ 1
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⋱
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⋱
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: ð28bÞ
6. General criteria of the admissible spring configuration

In this section, general criteria G1–G5 of the admissible spring configurationmatrices for the design of an n-link statically balanced
planar articulated manipulator are investigated. The order of determination of spring configuration is as follows: the first step deals
with the top-right corner of the spring configuration matrix; secondly, the diagonal entries λuv where u + v = 2n − 1; then, the
diagonal entries λuv where u + v = 2n − 2; the rest may be deduced by analogy. In addition, for entries on the same diagonal line,
those lie in the first row or the last column are top priorities.

Consider the top-right corner of K. The non-zero component matrix K1n
g as shown in Eq. (20) has a negative value. In order to

balance the off-diagonal terms for K to be zero, it is necessary to install at least one spring between ground and end link. In addition,
this specific basic spring has to contribute a component matrix K1n

ik with a positive value. Hence, according to Fig. 4, the attachment
angles of the spring must be equal to (90°, 0°) or (270°, 180°). The general criterion G1 as shown in Table 1(a) is obtained.

The spring, which is required to fit between ground and end link, produces non-zero component matrices in all entries of
stiffness block matrix. In order to compensate for the off-diagonal terms especially focusing on the last column of the spring
configuration matrix, one more spring needs to be attached between ground and end link or between the ground-pivoted link and
end link. If the last column of the stiffness block matrix remains non-zero, one more spring is required to be installed between the
ground-pivoted link and end link or between the third link and end link. The rest may be deduced by analogy. The general
criterion G2 as shown in Table 1(a) is derived.

According to the distribution feature of non-zero component matrices in elastic stiffness block matrix, as shown in Fig. 3, each
spring produces non-zero component matrices with two distinct values at most in the first non-zero row of the off-diagonal
elastic stiffness block matrix. However, the gravitational stiffness block matrix possesses n − 1 distinct component matrices in
the first row. Hence, every two connected links must have at least one ground-attached spring to balance the first row of
gravitational stiffness block matrix. The general criterion G3 is shown in Table 1(a).

According to G3, considering the distribution of positive and negative values of non-zero terms in Kik associated with the
attachment angles, the feasible ground-attached spring installation configuration corresponding to λ1v is discussed. Since the
non-zero terms contributed in the first row of Kik by the spring, are expected to balance the non-zero terms with negative values
in the first row of Kg, the distribution of positive and negative values of non-zero terms in Kik produced by the ground-attached
Fig. 8. Equivalent spring configuration installation for three adjacent links.
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Table 1
Criteria of the admissible spring configuration matrices for the design of an n-link statically balanced planar articulated manipulator.

(a) General criteria

G1. λ1n must not be less than 1. A basic spring with attachment angles (α1n,β1n) equal to (90°, 0°) or (270°, 180°) is required to fit in between ground and
end link.

G2. At least two springs are required to be installed on the end link, two attached between ground and end link or one installed between ground and end
link and another attached between the ground-pivoted link and end link. The elements in the last column of the spring configuration matrix have to
satisfy ∑ j = 1

n − 1λjn ≥ 2.
G3. Every two adjacent links must have at least one ground-attached spring. That is, total number of ground-attached springs must be greater than ⌈(n − 1)/2⌉,

where ⌈*⌉ denotes the ceiling function. Each element in the first row of the spring configuration matrix must satisfy λ1v + λ1(v + 1) ≥ 1 for v = 2,…, n − 1.
G4. λ1v do not correspond to ground-attached springs with attachment angles (270°, 0°). For entry (1, v⁎) where 3 ≤ v* ≤ n, if λ1v� ¼ 0 or λ1v�≠0

corresponding to∑K ik
1 v�−1ð Þ with negative value, λ1 v�−1ð Þ must be at least equal to 1 corresponding to springs with attachment angles (90°, 0°) or (270°,

180°); if λ1v�≠0 corresponding to∑K ik
1 v�−1ð Þ with positive value, λ1 v�−1ð Þ can be equal to 0 or greater than 1 corresponding to springs with attachment

angles (90°, 0°), (90°, 180°), or (270°, 180°).
G5. For any entry (u⁎, v⁎) where u⁎ ≠ 1, if∑u�−1

u¼1 λuv� þ∑n
v¼v�þ1λu�v ¼ 0 orλuv� for u ≤ u⁎ − 1 do not correspond to any spring with attachment angleβuv�

equal to 180°, andλu�v for v ≥ v⁎ + 1 do not correspond to any spring with attachment angleαu�v equal to 0°,λu�v� cannot be zero.λu�v� has to be at least

1 associated with a spring with αu�v� ;βu�v�
� �

equal to (0°, 0°) or (180°, 180°).

(b) Additional criteria (depending on specific design objectives)

Design objective: minimum number of springs
S1. λ1n must not be less than 1. A spring with attachment angles (α1n,β1n) equal to (90°, 0°) is required to be fitted between ground and end link.
S2. ∑ (λ1n + λ2n) must be equal to 2. A spring with attachment angles (α 2n,β2n) equal to (180°, 180°) and a2n equal to r2 fitted between ground-pivoted

and end link, or that with attachment angles (α1n,β1n) equal to (90°, 180°) or (270°, 180°) installed between ground and end link is required.
S3. λ1v has to be equal to 1, for v = 3, …, n − 1. Only ground-pivoted link and end link do not need to be installed a ground-attached spring with

attachment angles (α1v,β1v) equal to (90°, 180°).

Design objective: minimum total number of articulated joints which springs span over
J1. Only single spring can be installed between a pair of distinct links. λuv cannot be greater than 1. λuv ≤ 1 for u, v = 1, …, n.
J2. A spring with attachment angles (α1n,β1n) equal to (90°, 0°) is required to be fitted between ground and end link. λ1n must be equal to 1.
J3. A spring is required to be fitted between ground-pivoted and end link. λ2n must equal to 1. The attachment angles of the spring (α2n,β2n) equal to (180°,

180°), and a2n equals to r2.
J4. If λ1v� does not correspond to any springs with attachment angle β1v� equal to 180°, entry lies in the second row, column v⁎ must be equal to 1,

corresponding to a spring with attachment angles (α2v,β2v) equal to (180°, 180°) and a2v equal to r2.
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spring with attachment angles (270°, 0°) as shown in Fig. 4(a) is not appreciated. Particularly when compared with that of
produced by the ground-attached spring with attachment angles (90°, 0°) as represented in Fig. 4(c). In addition, the magnitude
of non-zero terms in the first row of Kg are in an ascending order from K1n

g to K12
g . In order to zero those non-zero terms, ∑ K ik

must possesses non-zero terms with positive values in the first row and with magnitude of an ascending order from ∑ K1n
ik to

∑K12
ik . If none of the ground-attached springs is installed on link v⁎ or if some are but correspond to∑K ik

1v� with negative value, it
has to install at least one ground-attached spring with attachment angles (90°, 0°) or (270°, 180°) on link v⁎ − 1 to make

∑Kik
1 v�−1ð Þ with positive value greater than∑K ik

1v� . If there is more than or equal to one ground-attached spring installed on link

v⁎ already corresponds to ∑Kik
1v� with positive value, none of ground-attached springs installed on link v⁎ − 1 is allowable. The

general criterion G4 is concluded as shown in Table 1(a).
The component matrixKu�v� beyond the first row and the last column is associated with the springs attached on link u⁎ or link v⁎,

and the springs that span over links u⁎ and v⁎. Consider the springs that are not attached to the ground. For springs spanning over links
u⁎ and v⁎, according to Eqs.(26c) and (27c), springs installed between link u that precedes link u⁎ and link v that is beyond link v⁎

contribute non-zero termswith positive sign to the value ofKu�v� as shown in Fig. 4. Hence, in order to zero each componentmatrix in
off-diagonal stiffness blockmatrix out of the first row, springs that contribute negative sign to the value ofKu�v� are required. According

to Eqs.(26b) and (27b), springs installed between links u⁎ and v⁎ associated with αu�v� ;βu�v�
� �

equal to (0°, 0°) or (180°, 180°) as

shown in Fig. 4(a) and (d) contribute negative sign to the value of Ku�v� . From Eqs.(26d) and (27d), springs attached between link u

that precedes link u⁎ and link v⁎ associated with βuv� and equal to 180°, as shown in Fig. 4(b) and (d), which also contribute negative
sign to the value ofKu�v� . According to Eq.(27a), the springs attached between link u ⁎ and link v that is beyond link v⁎ and associated
withαu�v equal to 0° as shown in Fig. 4(a) and (b). As a result, a (0°, 0°) spring or a (180°, 180°) spring between links u⁎ and v⁎ have to
be installed unless there is a spring attached from link preceding link u⁎ to link v⁎ or from link u⁎ to link succeeding link v⁎ that
contributes negative sign to the value of Ku�v� . The general criterion G5 is obtained, as shown in Table 1(a).

7. Specific design objectives for spring installation

7.1. Minimum number of springs

The admissible spring configuration with minimum number of springs can be further determined. To achieve static balancing
using minimum number of springs, each spring must be utilized to maintain balance. Based on this principle, three additional
criteria S1–S3 are obtained.
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According to G1, at least one spring has to be installed between ground and end link in order to maximize the contribution of
elastic potential effect to achieve static balancing. The attachment angles (α1n,β1n) have to be equal to (90°, 0°), since it produces
non-zero terms with positive values in the first row of stiffness block matrix as shown in Fig. 4(c). The additional criterion S1 as
shown in Table 1(b) is derived.

As the spring embedded between ground and end link produces non-zero terms in all component of stiffness block matrix,
another spring is required to compensate the non-zero terms produced in the second row, last column. According to G2, at least
two springs are necessary to be attached on end link. Except for the specific spring required based on S1, one more spring has to
be installed between ground and end link or between ground-pivoted link and end link. In order to maximize the elastic potential
effect to achieve static balancing, the spring has to produce n − 1 terms with negative sign and same magnitude of the value to
zero the non-zero terms with positive sign in the last column. Hence, according to Fig. 4(b) and (d), the required spring attached
between ground and end link is associated with β1n equal to 180°. From Fig. 6(a), the required spring installed between
ground-pivoted link and end link is associated with (α2n,β2n) equal to (180°, 180°), and a2n equals to r2. The additional criterion
S2 is shown in Table 1(b).

According to G3, every two adjacent links must have at least one ground-attached spring. In addition, in order to zero
the rest of non-zero component matrices in K using minimum number of springs, from G4 and G5, it can be found that
installing ground-attached springs associated with attachment angles equal to (90°, 180°) as shown in Fig. 4(d) on each
links except for ground-pivoted link and end link gains maximum profit. The additional criterion S3 as shown in Table 1(b)
is obtained.

Based on the general criteria and three additional criteria above, the admissible configuration matrices for 1-, 2-, 3-, and 4-DOF
statically balanced articulated manipulator are tabulated in Table 2 with corresponding schematic diagrams. From S1 and S2, each
n-link statically balanced articulated manipulator corresponds to two admissible configuration matrices. One with both the first
and second row of the last column equal to 1, where λ1n = 1 corresponds to a (90°, 0°) spring and λ2n = 1 corresponds to a
(180°, 180°) spring. The other admissible configuration matrix corresponds to double installation between ground and end link
with a (90°, 0°) spring and a (90°, 180°) or (270°, 180°) spring. For n equal or greater than 4, according to S3, the rest of the
components of configuration matrix can then be determined.
Table 2
Admissible configuration matrices with minimum number of spring and the corresponding schematic diagrams.

n=2 (1-DOF) n=3 (2-DOF)

0 1*

0

0 0 1

0 1*

0

0 0

0

2*

0

0

n=4 (3-DOF)

0 0 1 1

0 0 1

0 0

0

0 0 1

0 0

2*

0

0 0

0

n=5 (4-DOF)

0 0 1 1 1

0 0 0 1

0 0 0

0 0

0

0 0 1 1 2*

0       0 0 0

0 0 0

0 0

0

* denotes the spring has two ways of installation with different attachment angles.

Unlabelled image
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Considering the equivalent spring installation for mono-articular spring, (90°, 0°) spring required for 2-links manipulators can
be replaced by a (270°, 180°) spring. Similarly, the mono-articular spring with attachment angles (180°, 180°) required for the
3-links manipulators can be substituted for that with attachment angles (0°, 0°).

The minimum numbers of required spring are 1, 2, 3, and 4 for 1-, 2-, 3-, and 4-DOF statically balanced articulated manipulator
respectively. The minimum number of springs required for an n-link system is shown as:
minN ¼ n−1: ð29Þ
The results of admissible spring configuration matrices are different from that of proposed by Lin et al. [17]. Lin et al. suggested
k is specified to be predetermined so that only four parameters are considered in design equations. In addition, only single
installation is available. The minimum number of springs suggested is equal to ⌈n(n − 1)/4⌉. In contrast, the proposed admissible
spring configuration matrices in this paper are based on two assumptions. Firstly, kik, aik, bik, αik, βik are five parameters of design
equations. Within, αik and βik only have two choices. Secondly, multiple installation is available, whichmeans that elements in the
spring configuration matrix Λ are not restricted to 0 or 1.

From another aspect, the minimum number of springs with direct spring installation proposed in this paper is equal to that of
the auxiliary link method as suggested by Streit and Shin [20]. From a practical point of view, installing equal number of springs to
achieve static balancing with direct spring installation is appreciated as without adding 2(n − 2) auxiliary links into the system.
However, if the direct spring installation method is used, since each link except for ground-pivoted link must be installed at least
one ground-attached spring, the number of springs that span over great distance may increase while the degrees of freedom of
the statically balanced articulated manipulators become higher.

7.2. Minimum total number of articulated joints which springs span over

As springs with larger spring constant are harder to be elongated, as large number of articulated joints in which a spring spans
over is not appropriate. In addition, the fewer number of total articulated joints a spring spans over, the less likely of interference.
Hence, we aim to consider another design objective, which is to minimize the total number of articulated joints that springs span
over. According to the analyses of gravitational effect of manipulator and elastic potential effect of spring, the criteria of
admissible spring configuration can be obtained. The design objective function is shown as:
min
X

N
k−ið Þ: ð30Þ
According to the characteristic of equivalent spring installation for multiple installations of springs, as shown in Eqs. (28a)
and (28b), a multiple installation can be replaced by two single installations. In order to minimize the total number of
articulated joints which springs span over, only single installation is available. The additional criterion J1 as shown in Table 1(b)
is obtained.

From G1 and J1 above, one spring is required to be installed between ground and end link. In order to gain the largest
elastic potential effect to balance the non-zero terms with negative values in the first row of gravitational stiffness block
matrix, the attachment angles (α1n,β1n) of the spring have to be equal to (90°, 0°). The additional criterion J2 is shown in
Table 1(b).

According to J2, it is necessary to attach a (90°, 0°) spring between ground and end link. Since the spring contributes non-zero
terms with positive values in each entries of the stiffness block matrix as shown in Fig. 4(c), another spring is required to
compensate the non-zero terms that appear in the last column. With target of minimum total number of articulated joints, which
springs span over, a (180°, 180°) spring attached between the ground-pivoted link and end link is required. In addition, to balance
the non-zero terms in the last column from the second row to the row n − 1 at the same time, the spring has to be attached on
the joint of ground-pivoted link according to Fig. 6(a), a2n equals to r2. The additional criterion J3 as shown in Table 1(b) is
derived.

Based on J3, considering the entries in the second row of spring configuration matrix according to G5, there is a spring
corresponding to λ2n = 1 but without attachment angle α2n equal to 0°. Hence, for entry (2, v⁎), where λ1v� does not
corresponding to any spring with attachment angle β1v� equal to 180°, λ2v� must be equal to 1, corresponding to a (180°, 180°)
spring that produces non-zero terms with negative values and with samemagnitude in the last non-zero column of stiffness block
matrix, as shown in Fig. 6(a). The additional criterion J4 as shown in Table 1(b) is obtained.

From G3, G4 and J4 with the design objective of minimum total number of articulated joints which springs span over, the feasible
ground-attached spring installation configuration associated with specific attachment angles can be generated. For λ1v� ¼ 1
corresponding to a (90°, 0°) or (90°, 180°) spring,
λ1 v�−1ð Þ ¼
0 or 1 with a 90�;180�� 	

spring v� ¼ 5;…;n
0 or 1 with a 90�;180�� 	

or 90�
;0�� 	

spring v� ¼ 4
0 v� ¼ 3

:

8<
: ð31Þ
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For λ1v� ¼ 0 or λ1v� ¼ 1 corresponding to a (270°, 180°) spring,
Table 3
Admiss

n = 2

0 1
�

* denot
λ1 v�−1ð Þ ¼
1 with a 270�

;180�� 	
spring v� ¼ 5;…;n

1 with a 270�
;180�� 	

or 90�
;0�� 	

spring v� ¼ 3;4
:



ð32Þ
According to the general criteria and the additional criteria above, the admissible configuration matrices for 1-, 2-, 3-, and
4-DOF statically balanced articulated manipulator with minimum total number of articulated joints which springs span over are
tabulated in Table 3. The minimum total number of articulated joints which springs span over can be expressed as
min
X

N
k−ið Þ ¼ n2 þ n−6

2
for n≥3 ð33Þ
Based on J2 and J3, for each n-link statically balanced articulated manipulator, both the first and second rows of the last
column in admissible configuration matrices are equal to 1, where 1 which lies in λ1n corresponds to a (90°, 0°) spring, and
another which lies in λ2n corresponds to a (180°, 180°) spring with a2n equals to r2. From J4 and Eqs. (31) and (32), the rest of the
elements of configuration matrices for n = 4 and 5 can be obtained.

In addition, for n = 4 and 5, considers the specific admissible configuration matrix with both λ23 and λ24 equal to 1. Due to
the characteristic of equivalent spring installation, the corresponding installation of a mono-articular spring and a bi-articular
spring attached on link 2 can be replaced by that of attached on link 4, as shown in Fig. 8. Hence, it results an additional
admissible configuration matrix for both n = 4 and 5, corresponding to a (0°, 0°) bi-articular spring attached between links 2
and 4 and a (0°, 0°) or a (180°, 180°) mono-articular spring installed between links 3 and 4. Considering the equivalent spring
installation of mono-articular springs, the only (90°, 0°) spring required for 2-links manipulators can be substituted for a
(270°, 180°) one. Similarly, every mono-articular spring with attachment angles (180°, 180°) can be replaced by that of with
attachment angles (0°, 0°).

Note that there is one admissible configuration matrix for each n-link statically balanced articulated manipulator which, at the
same time, fits both objectives of minimum number of springs and minimum number of articulated joints which springs span
over. The spring configuration that installs one ground-attached spring on each link except for ground-pivoted link and
additionally attaches one spring between ground-pivoted link and end link is the optimal choice taking into account the two
design objectives.

8. Illustrative example of a 3-DOF planar articulated manipulator

A 3-DOF planar articulated manipulator that intends to be statically balanced is considered as an illustrative example. The
inertia and dimensional parameters are tabulated in Table 4 and the associated schematic plot is presented in Fig. 9(a). The
non-zero component matrices in the off-diagonal upper triangular gravitational stiffness matrix are as follows:
Kg
12 ¼ − s2

r2
m2 þm3 þm4

� �
gI′ ð34aÞ

Kg
13 ¼ − s3

r3
m3 þm4

� �
gI′ ð34bÞ

Kg
14 ¼ − s4

r4
m4

� �
gI′: ð34cÞ
ible configuration matrices with minimum total number of articulated joints which springs span over.

(1-DOF) n = 3 (2-DOF) n = 4 (3-DOF) n = 5 (4-DOF)

�

0

�
0 0 1

0 1�

0

2
4

3
5 0 0 1� 1

0 0 1�

0 0
0

2
664

3
775

0 1� 0 1
0 1� 1

0 0
0

2
664

3
775

0 1� 0 1
0 0 1

0 1�

0

2
664

3
775

0 0 1 1� 1
0 0 0 1�

0 0 0
0 0

0

2
66664

3
77775

0 1� 0 1 1
0 1� 0 1

0 0 0
0 0

0

2
66664

3
77775

0 1� 1 0 1
0 0 1 1

0 0 0
0 0

0

2
66664

3
77775

0 0 1 0 1
0 1� 1 1

0 0 0
0 0

0

2
66664

3
77775

0 0 1 0 1
0 0 1 1

0 1� 0
0 0

0

2
66664

3
77775

es the spring has two ways of installation with different attachment angles.



Table 4
Inertia and dimensional parameters of the 3-DOF manipulator.

j mj (kg) rj (m) sj (m)

2 0.848 0.180 0.090
3 0.848 0.180 0.090
4 1.330 0.070 0.060
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For design objective that minimizes the number of springs, the spring configuration matrix, based on the result of Table 2, can
be shown as:
Fig. 9. 3
which s
Λ ¼
0 0 1 2

0 0 0
0 0

0

2
664

3
775: ð35Þ
Its associated spring attachment angles are listed in Table 5(a). The non-zero component matrices in the off-diagonal upper
triangular elastic stiffness matrix contributed by three springs respectively can be derived accordingly.
K13

K13
12 ¼ k13a13 I′

K13
13 ¼ −k13a13

b13

r3
I′

K13
23 ¼ −k13

b13

r3
I

:

8>>>>><
>>>>>:

ð36Þ

K141

K
141
12 ¼ K

141
13 ¼ k141 a141 I′

K
141
14 ¼ k141 a141

b141

r4
I′

K
141
23 ¼ k141 I

K
141
24 ¼ K

141
34 ¼ k141 b

141

r4
I

:

8>>>>>>>><
>>>>>>>>:

ð37Þ
-DOF statically balanced manipulator with specific design objectives: (a) minimum number of springs; (b) minimum total number of articulated joints
prings span over.



Table 5
Spring design parameters of the 3-DOF manipulator for specific design objectives.

ik kik (N/m) aik (m) bik (m) αik (°) βik (°)

(a) Minimum number of springs
13 590 0.010 0.073 90 180
141 78 0.190 0.063 90 0
142 160 0.030 0.031 90 180

(b) Minimum total number of articulated joints which springs span over
12 93 0.134 0.120 90 0
14 128 0.134 0.045 90 0
24 320 0.072 0.045 0 0
34 400 0.262 0.035 180 180
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K142

K142
12 ¼ K142

13 ¼ k142a142 I′

K142
14 ¼ −k142a142

b142

r4
I′

K142
23 ¼ k142 I

K142
24 ¼ K142

34 ¼ −k142 b
142

r4
I

:

8>>>>>>>><
>>>>>>>>:

ð38Þ
According to Eqs. (23), (34a), (34b), (34c) and (36)-(38), to zero the upper triangular stiffness block matrix, the design
equations can be obtained as:
K12 ¼ − s2
r2

m2 þm3 þm4

� �
g þ k13a13 þ k141 a141 þ k142 a142

� �
I′ ¼ 0 ð39Þ

K13 ¼ − s3
r3

m3 þm4

� �
g−k13a13

b13

r3
þ k141a141 þ k142a142

" #
I′ ¼ 0 ð40Þ

K14 ¼ − s4
r4

m4

� �
g þ k141a141

b141

r4
−k142a142 b

142

r4

" #
I′ ¼ 0 ð41Þ

K23 ¼ −k13
b13

r3
þ k141 þ k142

" #
I ¼ 0 ð42Þ

K24 ¼ K34 ¼ k141
b141

r4
−k142

b142

r4

" #
I ¼ 0: ð43Þ
By arranging Eqs. (39)-(43), the attachment points vary depending on spring constants. The spring constants correspond to a
maximum elongation, which limits the specified workspace of the manipulator, should be considered. The spring constants k13,
k141, and k142 are determined through trial-and-error with appropriate installation parameters a13, b13, a141, b141, a142, and b142. The
design parameters of springs are listed in Table 5(a).

This 3-DOF statically balanced planar articulated manipulator is simulated where the elastic potential energy function,
and the gravitational potential energy functions are plotted in Fig. 10(a). The motion is initially with θ2 = 135°, θ3 = 225°,
and θ4 = 270°. Next, the ground-pivoted link rotates vertically while links 3 and 4 remain horizontal and vertical
respectively, where θ2 = 90°, θ3 = 270°, and θ4 = 270°. Finally, links 3 and 4 are raised to complete the motion, where
θ2 = 90°, θ3 = 315°, and θ4 = 45°. The elastic potential energy and the gravitational potential energy are entirely
transferred, thus the total potential energy remains constant equal to 20.56 N m throughout the motion.

For another design objective that minimize total number of articulated joints which springs span over, according to the result
of Table 3, the spring configuration matrix can be shown as:
Λ ¼
0 1 0 1

0 0 1
0 1

0

2
664

3
775 ð44Þ



Fig. 10. Simulated potential energy through the motion: (a) minimum number of springs; (b) minimum total number of articulated joints which springs span
over.
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is associated with spring attachment angles tabulated in Table 5(b). The schematic plot is shown as Fig. 9(b). The non-zero
which
component matrices in the off-diagonal upper triangular elastic stiffness matrix generated by four springs respectively are
obtained.
K12 K12
12 ¼ k12a12

b12

r2
I′:

(
ð45Þ

K14

K14
12 ¼ K14

13 ¼ k14a14 I′

K14
14 ¼ k14a14

b14

r4
I′

K14
23 ¼ k14I

K14
24 ¼ K14

34 ¼ k14
b14

r4
I

:

8>>>>>>>><
>>>>>>>>:

ð46Þ

K24

K24
23 ¼ −k24

a24

r2
I

K24
24 ¼ −k24

a24

r2

b24

r4
I

K24
34 ¼ k24

b24

r4
I

:

8>>>>>>><
>>>>>>>:

ð47Þ

K34 K34
34 ¼ −k34

a34

r3

b34

r4
I:

(
ð48Þ
To achieve static balancing, according to Eqs. (23), (34a), (34b), (34c) and (45)-(48), the design equations are as follows:
K12 ¼ − s2
r2

m2 þm3 þm4

� �
g þ k12a12

b12

r2
þ k14a14

" #
I′ ¼ 0 ð49Þ

K13 ¼ − s3
r3

m3 þm4

� �
g þ k14a14

� �
I′ ¼ 0 ð50Þ

K14 ¼ − s4
r4

m4

� �
g þ k14a14

b14

r4

" #
I′ ¼ 0 ð51Þ

K23 ¼ k14−k24
a24

r2

" #
I ¼ 0 ð52Þ

K24 ¼ k14
b14

r4
−k24

a24

r2

b24

r4

" #
I ¼ 0 ð53Þ

image of Fig.�10
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K34 ¼ k14
b14
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þ k24

b24

r4
−k34

a34
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r4

" #
I ¼ 0: ð54Þ
The suitable spring constants and installation parameters are listed in Table 5(b). Similarly, the variation of elastic and
gravitational potential energy with same simulated motion is plotted in Fig. 10(b). The total potential energy equals to a constant
27.27 N m in any configuration.

9. Conclusion

This paper presents a design methodology to determine the spring installation configuration on a statically balanced planar
articulated manipulator. The amended formulation of stiffness block matrices is proposed to deal with balance between
gravitational potential energy and elastic potential energy. This paper discusses the elastic potential effect of spring, which is
affected by the design parameters from two separate parts. The attachment angles of spring installation have an impact on the
distribution of positive and negative value of non-zero terms in the elastic stiffness block matrix, while the attachment points of
spring installation influence the distribution of magnitude of the value of non-zero terms in the elastic stiffness block matrix. The
characteristic of equivalent spring installations, which produce same elastic potential effect, is also disclosed. Based on the
analysis, general criteria of admissible spring configuration for n-link statically balanced articulated manipulator are derived.
Furthermore, for different specific design objective, such as minimum number of springs and minimum total number of
articulated joints which springs span over, the additional design criteria and admissible configuration matrices with 1-, 2-, 3-, and
4-DOF statically balanced planar articulated manipulators are obtained accordingly. The design of a 3-DOF statically balanced
planar articulated manipulator is given as an illustrative design example.
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