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Abstracts Most approaches to patent citation network analysis are based on single-patent

direct citation relation, which is an incomplete understanding of the nature of knowledge

flow between patent pairs, which are incapable of objectively evaluating patent value. In

this paper, four types of patent citation networks (direct citation, indirect citation, coupling

and co-citation networks) are combined, filtered and recomposed based on relational

algebra. Then, a method based on comprehensive patent citation (CPC) network for patent

value evaluation is proposed, and empirical study of optical disk technology related patents

has been conducted based on this method. The empirical study was carried out in two

steps: observation of network characteristics over the entire process (citation time lag and

topological and graphics characteristics), and measurement verification by independent

proxies of patent value (patent family and patent duration). Our results show that the CPC

network retains the advantages of patent direct citation, and performs better on topological

structure, graphics features, centrality distribution, citation lag and sensitivity than a direct

citation network; The verified results by the patent family and maintenance show that the

proposed method covers more valuable patents than the traditional method.
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Introduction

Patents have long been recognized as a very rich data source for studies on innovation and

technical changes. There are several advantages to patent data. For example, patents dis-

play extremely wide coverage in terms of technologies, assignees and geography; each

patent contains detailed information on innovation; patent data are administrative data and

are widely available at relatively low cost. Thus patents have become an important mea-

surement for evaluating technical change, technology strategies, and market trends. The

use of patents and patent statistics as indicators of technological progress stands for both a

long tradition and a controversial discussion about the value of patents as indicators of

technological progress (Schmookler 1966; Griliches 1990). The OECD Patent Statistics

Manual (OECD 2009) gives a detailed list about patents as statistical indicators of

inventive activity, and covers the advantages and disadvantages of patent statistic indictors

in depth. The disadvantages include, among others, the fact that not all inventions are

patented (Pavitt 1988), and the highly skewed distribution of patent value (Harhoff et al.

1999). It is therefore important to take into account the advantages and disadvantages when

compiling and interpreting patent data, as failing to do so may lead to erroneous

conclusions.

It is widely acknowledged that the value of an innovation can change (often dramati-

cally) over time. The term ‘‘patent value’’ has several different meanings during the

different stages of the innovation value chain (Schumpeter 1939). New technology may

come along to supplant the old, rendering the old partially or possibly totally obsolete and

hence less valuable. Conversely, complementary technology may be commercialized by

further development, rendering the old innovation more valuable than it previously had

been; in the meantime, changes in consumer taste in the market also influence the value of

technology innovation (Sherry and Teece 2004). In fact, patent value is not carved in stone.

We should consider the issue of patent value in the context of the multiple stages in patent

evolution.

Patent value research is motivated by a variety of different reasons. The literature on

patent value differentiates between reasons driven by strategic needs and those driven by

technology management purposes. In terms of strategic needs, patent valuation can be

subject to sales, purchase, or licensing transactions, and may boost cooperation between

companies, ranging from joint ventures and alliances to acquisitions and mergers. In the

area of technology management, patent value evaluation can be used in identifying core

patents, and establishing technology early warning and tracking systems. Reitzig (2003)

summarizes four factors affecting patent’s economic value from the technological per-

spective: novelty, inventive activity, disclosure, and breadth (Reitzig 2003; Pitkethly

1997). In this paper, we define patent value as the technological value. The long-term

technological value is the importance of a patent as a foundation for subsequent techno-

logical inventions.

Currently, patent bibliographic information from the patenting procedure have been

followed by researchers to estimate or infer the technological value of patents

(von Wartburg et al. 2005). These bibliographic indicators comprise backward citations

(Narin et al. 1987), forward citations (Trajtenberg 1990), family size (Harhoff et al. 2003),

market value of the corporation (Hall et al. 2005), and claims (Lanjouw and Schankerman

2004). Among these bibliographic patent value indicators, patent citation (also called

patent forward citation) is the indicator that has been focused upon most and has been the

subject of the most in-depth research. Empirical studies have revealed a positive
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relationship between ‘‘times cited’’ of patents and the social value of inventions (Tra-

jtenberg 1990). Therefore, one may conclude that more often cited patents seem to gen-

erate higher technological value. Thus, by analyzing patent citation information, the patent

technological value can be indirectly measured.

The implementation of patent value evaluation by citation analysis is based on the two

assumptions: patent citation can be seen as an intellectual debt, which when received by a

patent can be seen as an indication of the patent’s importance, impact or even economic

value. Similarly, patent citation can also be interpreted as a ‘‘paper trail’’ or technological

‘‘footprint’’ left by knowledge (related to technology) flowing from the inventor/applicant

of the cited document to the inventor/applicant of the citing one (Hall et al. 2005). Hall

et al. (2005) thought the two aspects were related, with only minor differences in viewing

angle, as ‘‘clearly there is room to aim for an integrated approach’’.

In the past 20 years or so, there have been many criticisms leveled against these two

assumptions, especially the two criticisms of whether patent citations really reflect

knowledge transfer or accumulation between inter-personal knowledge flows, because

patent citations mainly derive from patent examiners, rather than inventors, being ulti-

mately responsible for the citations attached to patent documents (Breschi and Lissoni

2005). However, because of the existence of the inventor’s defensive motivation, an

assignee may deliberately choose not to cite the relevant patents of competitors (Chen et al.

2011).

Based on the limitations of the above assumptions, scholars have tried to improve patent

citation evaluation by adding identifications for the characteristics of edge between inter-

personal knowledge flows. For example, some scholars have divided citations into

examiner’s citations and applicant’s citations to test for the effects of evaluation (Alcácer

et al. 2009; Emmanuel and Megan 2005). Other scholars developed a co-citation method

by taking the text similarity into account (Li et al. 2007), and this method tends to preserve

the essential structural components of the corresponding traditional co-citation network.

Still other scholars have used bibliographic coupling to identify missing relevant patent

citation links, which greatly enhanced the effectiveness of identifying potential competitors

(Chen et al. 2011). Further scholars have used indirect patent citation—the length of

citation chains—to improve patent valuation, obtaining more precise information about the

impact of that patent (Atallah and Rodrı́guez 2006).

von Wartburg et al. (2005) thought that currently most of studies only used single patent

citation information, and only a few studies accounts for longer citation chains and getting

more out of the historical citation information (von Wartburg et al. 2005). In fact, the

overall relationship among all the patents based citation is extremely rich, For example,

direct citation analysis uncovers the explicit knowledge flow; co-citation analysis uncovers

the structure of the base knowledge; and bibliographic coupling analysis reveals research

subtopics, all these potential information based on citations should be integrated and

utilized instead of discarding. The use of multiple citation-based relationships combination

to foresee the research fronts has been developed and applied for almost two decade

(Glänzel 2012; Zitt and Bassecoulard 1994). However, there is little to study on the

evaluation of patent value by using multiple citation-based relationship combinations. This

is based on the fact that some scholars have begun to propose methods to effectively

combine multiple types of citation, so-called ‘‘comprehensive patent citation networks’’, in

order to facilitate a better understanding of patent citation network.

In this paper, the author constructed a CPC network for patent value estimation by the

following three steps: CPC network establishment (aggregating, filtering, recomposing);

observation of network characteristics (citation time lag and topological and graphics
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characteristics); and measurement verification (patent family and patent duration). The first

step systematically combines the four types of patent citation networks (direct citation,

indirect citation, patent coupling, co-citation). Such a network is a combination of data on

real-time patent citing relationships, showcasing a more thorough demonstration of

Internet observation and avoiding the limitations of employing single citation relationships.

The second step uses an empirical study based on the data of optical disks to observe

network characteristics. The last step is measurement verification, in which patent family

and patent duration data were verified as patent value proxies, showing comparisons of

direct citation networks. Patents with higher indegree in the CPC network can be more

sensitive than the patent citation network from the citation time lag perspective, which

shows more accurate results covering the triadic patent family and has a long duration time

of the patent. Through indicators from CPC and PCI, the effectiveness of CPC is

confirmed.

This paper is structured as follows: the second section reviews related literature; the

third section proposes a construction method for a CPC network; the fourth section is the

empirical study based on data on optical disks; finally, conclusions and prospects are

presented.

Literature review

Citation analysis has its origins within bibliometrics. Meyer (2000) studied the similarities

and differences between patent citations and paper citations. Scientific publications and

patent citations are both widely perceived as measurements of the impact of technology

and have similar network structural features (Meyer 2000). This paper applies the citation

techniques of scientific publications to patent citation analysis based on similarities

between patent citations and paper citations. That said, patent citations are multifaceted

and complex, and there are some differences between patent citations and paper citations.

Walker (1995) concludes that in a journal article, the author cites those authors that have

contributed to the subject of the article, whereas a patent examiner cites previous patents

and other works that relate to the application during examination for patentability. In

addition, (Webb et al. 2005) noted that patent citation also reflects underlying national

differences. Due to the existence of Information Disclosure Statements (IDS), in the United

States, applicants have a ‘‘duty of candor’’ to disclose any prior art ‘‘material to

patentability’’ of an invention, meaning that a patent filed in the United States generally

contains more citations (Alcácer et al. 2009). As such, when adapting bibliometric tech-

niques to patent citation analysis we need to treat these differences with caution.

Direct citation is the most familiar citation-based type. Garfield (1966) explained the

law of the indicators of the quantity of direct citation and proposed that direct citation can

be used for technical evaluation and technical similarity analysis (Garfield 1966). Direct

citation is a dyadic description for the citing–cited relationship, which allows us to observe

the patterns and end points of the knowledge flow process. However, both inventors and

examiners experience long time lags of almost 7 and 10 years (Alcácer and Gittelman

2006; Hall et al. 2001). This delay undermines the timeliness and reliability of patent value

evaluation.

With in-depth research into citation relationships, the citation-based relationships under

investigation have gradually expanded. The concept of bibliographic coupling was first

proposed by Kessler (1963). Small (1973) presented the concept of co-citation (Small
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1973). These two citation-based relationships, which are called similarity-based citation

networks, exhibit a similar principle that represents a shared relationship between two

patents through citing a common third patent, or being cited by two patents. This is a proxy

for what we call ‘‘sharedness’’ between these patents. The sharedness relationship has no

time restrictions, and the relationship within patent pairs reflects the network structural

features, so similarity-based citation networks can reveal the implicit knowledge flow that

direct patent citation cannot acquire.

The concept of indirect citation, previously named ‘‘longitudinal coupling,’’ and related

research, can trace their roots back several decades (Small 1997). Patent direct citation

networks only take into account the immediate citing–cited relationship within patent pairs

and neglect their indirect ties. It is reasonable to assume that the technological foundation

of citing patents not only encompasses the most recent developments cited directly, but

also draws on basic principles provided by earlier patents. Connections to basic patents are

revealed by indirect linkages, which are captured by citation chains (von Wartburg et al.

2005). Furthermore, all citations should not be equal. Patent quality takes into account

explicitly not only the number of citations received by a patent, but also the quality of all

patents involved in the ‘‘chain’’ of citations starting with that patent (Atallah and Rodrı́-

guez 2006).

The above four types of citation-based networks exhibit separately unique pattern,

which cover most representative 4 type of subgraphs from the triadic census (all possible

traids) prespective, and all citation-based networks come into being through the combi-

nation of the above 4 type of traids. So analyzing the 4 type of networks can be more fully

reflected the structural characteristics of patent citation network (De Nooy et al. 2011;

Small 1997). Currently, most approaches to patent network analysis only analyze single

relationships among four types of citations. When the lens is trained on a single rela-

tionship, an incomplete understanding of the nature of knowledge flow may result, so that

patent value cannot be objectively evaluated. In terms of patent valuation, the purpose of

incorporating the above three citation-based indicators into the measurement of patent

quality is in essence the same, which is to revise a basic hypothesis of all citations being

counted with equal weight, and to leverage the weighting system of direct-citation-based

indicators. Taking into account indirect citation factors ensures the weighting system gives

greater weight to long-term sustainable patents, while taking into account co-citation and

bibliographic factors ensures the weighting system strengthens the influence of ‘‘missing

links’’, which are revealed by filtering citations with a high similarity characteristic.

However, many authors have compared citation approaches, and the above four types of

citation-based network separately exhibit unique patterns that cover the four most repre-

sentative types of subgraphs from the perspective of triad census (all possible triads)

(Wasserman and Faust 1994). Furthermore, all citation-based networks come into being

through the combination of the above four types of triad (Small 1997; von Wartburg et al.

2005). So analyzing the four types of network can more fully reflect the structural char-

acteristics of patent citation networks (De Nooy et al. 2011; Small 1997). The above

comparison of several types of citation shows that no matter which kind of result is more

accurate, the single citation analytic technique is inadequate and inefficient.

From the above comparison of several type of citations, the results show that no matter

which kind of result is more accurate, the single citation analytic technique was inadequate

and inefficient. Thus, the approach of comprehensive patent citation networks, which is

similar to the concept of ‘‘combined linkage’’ proposed by Small (1997), can represent the

information richness of whole citation chains during the citation formation process, which

shortens citation lags within patent pairs and replenishes the implicit knowledge flow from
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missing links, and a comprehensive analysis can be conducted to help to uncover common

antecedents that affect relationships. Hence this analytic method is a suitable approach.

Today comprehensive analysis based on multiple citation relationships is becoming

more mainstream, as many authors have compared citation approaches Shibata et al.

(2008) drew a comparison of the three types of citation network (co-citation, bibliographic

coupling and direct citation) to detect emerging research fronts. The research showed that

direct citation could detect large and young emerging clusters earlier than coupling and co-

citation, and shows the best performance in detecting a research front, while co-citation

showed the worst (Shibata et al. 2008). Boyack and Klavans (2010) compared the per-

formance of clustering in journal citation networks created by direct citation and co-

citation. Their results suggested that a network of direct citations had higher content

similarity (Boyack and Klavans 2010).

A comprehensive understanding of a multiple-citation-based network structure is

important for a better understanding patent citation. And many scholars agree that the

combined method based on multiple types citations is an effective method. Chen et al.

(2011) identified the missing relevant patent links using combining bibliographic coupling

(Chen et al. 2011; Huang et al. 2011); Atallah and Rodrı́guez (2006) evaluated the quality

of the citing patents, not just the number of citations received by a patent (Atallah and

Rodrı́guez 2006); Small (1997) proposed a idea that combining the direct citation link with

all forms of the indirect linkage into a single measure, and to establish a weighted

scheme for all four type of citation-based relationships (Small 1997; von Wartburg et al.

2005) proposed that single-stage citation analysis is insufficient to reveal specific paths of

technological development, to mirror actual developments in a certain technological field,

citation analysis should rely on multiple citation relationships (von Wartburg et al. 2005).

All these methods attempt to receive a more comprehensive understanding of ‘‘real’’ patent

citation networks through combining the other citation-based elements.

However, there are many problems that remain unsolved through the combined

approaches mentioned above, which can be summarized by two points. First, why is the

combined citation-based network employed as a tool of patent value evaluation? Chen

et al. (2011) considered that there may be some missing relevant patents, and analyses of

patent citations may be inaccurate due to incomplete information on the relationships

among patents; Atallah and Rodrı́guez (2006) considered that all citations do not have

equal value, citations coming from patents of different qualities should be given a different

rating, and combining indirect patent citations into patent citation indicators should be

proposed to estimate patent value. Like citation time lag, network topological character-

istics are also important issues that hinder patent value evaluation effects, as a good patent

value indicator should evaluate the latest patents as soon as possible, and new patent value

indicators should be streamlined as much as possible. Second, considering how and the

extent to which we should combine the different types of citations, there have been many

approaches that combined two or more citations from one perspective (Atallah and

Rodrı́guez 2006; Yan and Ding 2012), however the related research is still not full-scale or

systematic.

Another difficulty of patent value evaluation from the CPC perspective is that there is

no existing fair and equitable standard for verifying patent evaluation. Researchers have

created a wide range of indirect measurement methods and proxies. In the these measure

approaches, data of renewal and family, which reflect the patents’ temporal and spatial

scope of protection, are correlated to the R&D cost of products, which pay for patents.

Therefore, these two indicators are frequently used as proxy indicators for patent evalu-

ation. Patents included in the family typically have higher value, as patentees only take on

1324 Scientometrics (2015) 105:1319–1346

123



the additional costs and delays of extending protection to other countries if they deem it

worthwhile. Renewal data is similar, reflecting the determination of patent holders (de la

Potterie and van Zeebroeck 2008); the renewal fee typically increases over time, and, at the

end of every period, patent holders must decide whether or not to renew. This paper uses

patent renewal data along with patent family data as a proxy for patent value, to verify the

measured effects of the CPC network in predicting which patents will be renewed and

which belong to triadic patent families, inferring that the CPC network is indeed associated

with technological value of patents.

Establishing the CPC network

Basic citation-based relationships

Any network can be described in terms of the proportions in the network of each of the 16

types of triad. This is called a triad census (Wasserman and Faust 1994). Understanding

triads and their distribution in the network is important because triads provide the basis for

many network structural characteristics. From the triad census, patent citation relationships

can be categorized into five types of isomorphic triad: direct citation, indirect citation,

coupling, co-citation, and transitive triple. The transitive triple is a special form of triad

census that can be combined with any of the four underlying basic citation-based network

types, so the transitive triple should not be thought of as a basic citation-based network

type in the context of this paper. The basic citation-based network types are shown in

Table 1. The relationships between triad census and transitivity are similarities rather than

differences. Both sources form the basis of thinking about how patents can be cohesive, but

triad census is more suitable for analyzing directed networks. Triad census can subdivide

the entire network into 16 unique subgraphs in terms of the proportion of triads, so triad

census provides the basis for network structural characteristics. The transitivity measure is

Table 1 The four basic citation-based network types

Features Direct citation Indirect citation Coupling Co-citation

Abbreviation PCI PID PCP PCO

Graph

Focuses of
different types

Relationship types Citation
relationship

Citation
relationship

Co-occurrence
relationship

Co-occurrence
relationship

Direction Directed Directed Undirected Undirected

Weight Binary Multi-valued Multi-valued Multi-valued

Symmetry Asymmetry Asymmetry Symmetry Symmetry
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the number of transitive triads divided by the number of possible transitive triads irre-

spective of variance of citation relationship.

Construction of different patent citation networks

Patent citation data are inherently asymmetric in nature. This is due to the time-based

character of citation information, whereby only the younger patent is able to cite the elder

one, so that the arrow of a patent pair can only point to the younger patent. The relationship

of coupling or co-citation is symmetric in dyads. However, when we extend our per-

spective to triads, as shown in Table 1, we find the symmetric relationships of coupling or

co-citation that are outlined in dotted boxes corresponding to the coupling or co-citation

columns. The citation networks are subsequently constructed based on the characteristics

of the four basic citation relationships:

1. Patent Direct Citation Network (PCI) is constructed by the citing and cited

relationship between patents. An arc from vertex i to vertex j denotes that the patent

j is cited by the patent i. The patent i is defined as the citing patent, and the patent j is

defined as the cited patent. A patent can be both a citing and cited patent from the

global network perspective. The adjacency matrix PCI can be defined as:

PCI ¼ 1 if the patent j is cited by the patent i

0 otherwise

�
ð1Þ

where PCI is an asymmetric m 9 m matrix, i.e., pciij 6¼ pciji;m ¼ Pj j, P is the set of

patents.

2. Patent Indirect Citation Network (PID) is constructed by patent pairs with inter-

generational relationships (unless otherwise stated, the length of path between pairs is

defined as 2 in this paper). PID is based on the basic network PCI. The multi-

generational relationship between a patent pair can also be defined as PCI[n]. If there is

patent k, make pcikipcikj ¼ 1, then pid
2½ �
ij ¼

PN
k¼1 pciikpcikj. The adjacency matrix PID

can be defined as (Xiaofan et al. 2012):

PID ¼ PCI n½ � ð2Þ

where PID is an asymmetric m 9 m matrix, i.e., pidij 6¼ pidji
3. Patent Coupling Network (PCP) Patent coupling occurs when two patents both cite

one patent in common. PCP is constructed by the co-occurrence relationship of patent

pairs. The construction of a patent coupling network is also based on the basic

network’s PCI. If patents i and j both have arcs pointing to patent k, then

pciikpcijk = 1; otherwise, picikpcijk = 0. Specifically, the subgraph of PCP consists of

three parts: two arcs separately representing patent i citing patent k (i ? k) and patent

j citing patent k (j ? k), and a symmetrical link between the two patents (i-j). These

symmetrical links are the focuses of the subgraph of PCP. The adjacency matrix PCP

can be defined as by (Yan and Ding 2012):

PCP ¼ PCI � PCIT ð3Þ

where PCP is a symmetric m 9 m matrix, i.e., pcpij ¼ pcpji
And the coupling counts of patent i and j is:
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pcpij ¼
XN
k¼1

pciikpicjk ð4Þ

4. Patent Co-citation Network (PCO) Co-citation, like coupling, is a similarity measure

for patents that makes use of citation relationships, and is defined as the frequency

with which two patents are cited together by other patents. PCO reflects the dual

relationship of patent pairs. If patents i and j are both cited by patent k, then

pcikipcikj = 1; otherwise, pickipcikj = 0. Specifically, the subgraph of PCO consists of

three parts: two arcs separately representing patent k citing patent i (k ? i) and patent

k citing patent j (k ? j), and a symmetrical link between the two patents (i-j). These

symmetrical links are the focuses of the subgraph of PCO. The adjacency matrix PCO

can be transformed from PCI as:

PCO ¼ PCIT � PCI ð5Þ

where PCO is a symmetric m 9 m matrix, i.e., PCOij ¼ PCOji

And the co-citation counts of patent i and j is:

pcoij ¼
XN
k¼1

pcikjpickj ð6Þ

Multiple citation relationships aggregation (MUCA)

As mentioned above, a single patent direct citation network does not fully reflect the

implicit knowledge flowing within patent pairs. Because that implicit knowledge flow is

often overlooked in patent citation network analysis, the issue of ‘‘missing links’’ was

proposed by Wilson (1995), who found that some relevant information may be missing or

simply unused in the patent direct citation network. Therefore, the paper considers com-

bining all types of citation-based networks as far as possible from the triadic perspective to

form a MUCA. There are some differences since the network is constructed based on

various patent citation types. Accordingly, some processing, such as dichotomization, off-

diagonal and asymmetric transformation, is necessary to ensure smooth matrix integration

before citation-based network aggregation.

Firstly, it is necessary to dichotomize the PID, PCP, and PCO. Relational algebra

provides a relational-combinated nominal dimension for evaluation. This evaluation

dimension is only concerned with whether a certain type of relationship exists between

patent pairs and how this relationship is combined, and not with the link strength and node

frequency of matrix. As such, it will be necessary to do transformations on individual

matrix before ‘‘reduction’’ and ‘‘combination’’ strategies can be applied. The process can

be executed by the UCINET software (Borgatti et al. 2002): Transform[Dichotomize.

Secondly, the values on the main diagonal of many networks during the matrix trans-

formations process are not very meaningful, and we need to remove the main diagonal and

set all those values to zero or one. In the UCINET software, this step can be completed by

Transform[Diagonal.

Thirdly, PCI and PID are asymmetric matrix, and PCP and PCO are symmetric matrix.

Thus, we need normalize four types of matrix into a uniform asymmetric matrix. The

reason for asymmetric transformation is to remove redundant information of the PCP and

PCO networks. The asymmetric processing can take advantage of UCINET software

Scientometrics (2015) 105:1319–1346 1327

123



functions Transform[Symmetrize[Lower Half or Transform[ Symmetrize[Upper

Half.

After data processing, PIDp, PCPp, and PCOp can be retrieved. Finally, we integrate the

four citation-based networks into the MUCA. The mathematical adjacency matrix of the

MUCA can be defined as:

MUCA ¼ PCI þ PIDpþ PCPpþ PCOp ð7Þ

where MUCA is an asymmetric m 9 m matrix, i.e., i[ j;mucaij 6¼ mucaji.

Filtering of the MUCA network

Through the aggregation of multiple citation relationships, we receive the most complete

citation relations set, but the higher number set of relations does not imply higher quality,

as too much information may mislead the results of our analysis. It is necessary to filter the

MUCA in order to find the implicit knowledge flow, and therefore this paper classifies the

MUCA into three levels based on relationship property, strength and overlap character-

istics of network relationships.

1. Relational property Newman distinguished four categories of real-world networks in

an important review article: social networks (e.g., collaboration networks), informa-

tion networks (e.g., citation networks), technical networks (e.g., Internet router

networks), and biological networks (e.g., protein networks) (Newman 2010). Based on

such divisions, patent direct citation is a real relationship, which is collectively

established by the judgment of patent applicants and examiners, while PID, PCP, and

PCO are ‘‘artificial relationships’’ based on transitivity or co-occurrence relationships.

The core difference lies in whether or not relationships based on the citing behavior

between ‘‘real relationship’’ and ‘‘artificial relationship’’ are based on objective

criteria. A single ‘‘real relationship’’ link constitutes the ability to demonstrate

knowledge flowing between patent pairs, However, there is some ‘‘noise’’ in patent

pairs of artificial relationships, which is not enough to prove knowledge flow between

patent pairs; only when in conjunction with other factors are artificial relationships

used to identify knowledge flow. So the relationship property is used as a judgment

supplement for identifying knowledge flow (Yoon and Park 2004).

2. Relational strength For artificial relationships, there are two factors that need to be

considered: the frequency and link strength of each patent pair, which are the two

dimensions of local feature focus (Vinkler 1998). Link strength in particular is used as

a method of knowledge flow judgment, and some ties below a certain threshold are

filtered out when the link strength of a network has been calculated. Usually it is

assumed that the stronger the link strength is, the more knowledge flow there is,

showing that relational strength provides us with a second standard for filtering.

3. Relational overlap Most previous studies have made the assumption that there is a

single relationship for each patent pair. However, real networks often exhibit more

complexity. Relational data, often represented as a multi-graph, can exhibit rich

information (De Nooy et al. 2011). Complexity of patent citation networks is

characterized by existence of an overlap relationship between the four types of citation

networks. For example, there are not only direct citation relationships, but also co-

citation relationships between patent pairs. The overlapping features can be used to

identify traces of knowledge flow, help us to filter out accidental citations, and avoid
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some errors caused by artificial relationship networks. ‘‘Missing links’’, for example,

can be identified by overlap relationships.

Multi-layer networks by filtering

Based on the above filtering criteria, MUCA can be divided into four levels:

1. Multi-relations Overlap Level (MOL) As MUCA has aggregated the four types of

citation networks into a network, it inevitably shows a large number of redundant ties,

which reflects the overlapping of patent pairs from different networks (Liu et al. 2010).

In fact, this overlap is a very important structural characteristic of patent citation

networks. Firstly, overlapping relations provide further evidence for examination of

knowledge flow; secondly, overlapping relations contain features such as transitivity

and reciprocity, which may be used to analyze the status of whole network. The MOL

network can be defined as follows:

MOL ¼ 1; mucaij [ 1;
0; otherwise;

�
ð8Þ

where MOL is an asymmetric m 9 m matrix, i[ j;molij 6¼ molji.

2. Single Real-relation Level (SRL) SRL contains all direct citations except the

overlapping relations of MOL, because direct citation is a real relationship indicating

knowledge flow between patent pairs based on citing behavior, established by both

assignees and examiners, and stands as an independent level. The number of citations

at this level will change dramatically over time, enabling new patents to enter the

MOL with citations accumulated through a period of time. At the same time, some

patents remain in the SRL. The SRL network filtering algorithm is as follows:

SRL ¼ 1; pciij � molij [ 0;
0; otherwise;

�
ð9Þ

where SRL is an asymmetric m 9 m matrix, i[ j; srlij 6¼ srlji.

3. Single Artificial-relation Level with High Strength (SAH) For the artificial relationship,

the single relevant relation may not indicate knowledge flow, and thus some auxiliary

means are needed to jointly acknowledge knowledge flow existence (Braam et al.

1991). The cited frequency of a patent is an important indicator to acknowledge

knowledge flow of patent pairs, so the SAH network is obtained by selecting citations

with high link strength from single artificial relationships, i.e. indirect or coupling

citations. Relation strength judgment can effectively eliminate the random error

caused by relational algebra transformation, as an effective assistant means of

judgment. The SAH network contains important ‘‘implicit knowledge flow’’, so the

SAH stands as an independent level.

Two steps are required to obtain the SAH. Take a co-citation relationship as an example:

Step 1 Calculate the co-cited frequency of each basic patent pair, which can be obtained

through relational algebra transformation.

PCO ¼
Pn
k¼1

pcikipcikj; i 6¼ j;

0 i ¼ j;

8<
: 1� i� n; 1� j� n ð10Þ
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Step 2 Calculate the linkage strength of each patent pair, which can be calculated from

the incidence matrix.

PCOs ¼
pcoij

pciindi þ pciindj � pcoij
; i 6¼ j;

0; i ¼ j;

8<
: 1� i� n; 1� j� n ð11Þ

where pcoij is the co-cited frequency calculated in the previous step, pciindi is the

indegree of patent i and is also the patent i’s cited frequency. The same equations can

be applied to analyzing the PCP and PID. The linkage strengths of patent pairs of the

artificial relationships form the new asymmetrical matrix of PIDs, PCPs, and PCOs.

Patent pairs below a certain threshold are filtered out and the remaining patent pairs

comprise the PIDh, PCPh, and PCOh. We take the matrix average density a, b, c as the

thresholds for the PIDs, PCPs, and PCOs respectively, which is the input of the next

step.

PIDh ¼ 1; pidsij � a
0; otherwise

�
ð12Þ

PCPh ¼ 1; pcpsij � b
0; otherwise

�
ð13Þ

PCOh ¼ 1; pcosij � c
0; otherwise

�
ð14Þ

SAH can be integrated by relational matrix of the PIDh, PCPh, PCOh.

SAH ¼ 1; pid hð Þijþpcp hð Þijþpco hð Þij¼ 1

0; otherwise

�
ð15Þ

where SAH is an asymmetric m 9 m matrix, i[ j; sahij 6¼ sahji.

4. Single Artificial-relation with Low Strength (SAL) SAL and SAH have similar

algorithms, which are separated by the threshold.

PIDl ¼ 1; pidsij\a
0; otherwise

�
ð16Þ

PCPl ¼ 1; pcpsij\b
0; otherwise

�
ð17Þ

PCOl ¼ 1; pcosij\c
0; otherwise

�
ð18Þ

On an artificial level, the SAL is prone to generate more random errors, so those

relationships are filtered out. SAL is defined as:
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SAL ¼ 1; pid hð Þijþpcp hð Þijþpco hð Þij¼ 1

0; otherwise

�
ð19Þ

where SAL is an asymmetric m 9 m matrix, i[ j; salij 6¼ salji.

Constructing the CPC network

The aim of this paper is to recover as much structure as possible from a patent direct

citation network. Through taking into account more systematic structural features, we can

achieve better evaluation effects. It is perhaps best to combine all three citation relations

into a single combined measured by relational algebra. Unlike the other combined

approaches, the CPC network does not use weighting methods, seeing as citations come

from different networks with independent feature types. In addition, patent value evalua-

tion does not mean that the more citations are considered, the better, so we should choose

patent pairs which reflect knowledge flow, and use those patent pairs after filtering the

value of the patents’ value.Based on the previous standards, we integrate the MOL and

SRL with SAH into the construction of the CPC.

CPC ¼ 1; molij þ srlij þ sahij � 1;
0; otherwise;

�
ð20Þ

A similar algorithm can be obtained using relational combination between MUCA and

SAL. This can be obtained by the following equation:

CPC ¼ 1; mucaij � salij � 1

0; otherwise

�
ð21Þ

where CPC is an asymmetric m 9 m matrix, i[ j; salij 6¼ salji.

Flowcharts are divided into two layers and four steps. The upper layer shows the matrix

transformation process, and the lower layer shows the graphic changes. Four steps are

organized by the order of CPC network construction: (1) matrix transformation; (2)

aggregation; (3) multi-layer networks by filtering; (4) the CPC network establishment.

Observations of CPC network characteristics

Data

In order to demonstrate the feasibility of the research methodology, this paper focuses on

optical disk technology. Developments in the optical disk field have occurred at a rapid

pace over the last half-century. Many new optical disk formats (i.e. CD (1982), DVD

(1995), UDO (2003), UMD (2004), Hi-MD (2004), BD (2006), HD DVD (2006)) have

been produced, and thus far the optical disk has experienced four generations of techno-

logical changes. Enormous changes in optical disk technology make it easier for us to

identify the influence of citations. For this paper, the author created a digital optical disk

patent dataset to observe the proposed CPC network. United States Patent Classification

(USPC) categories are used to represent different patent technology fields and the optical

disk technology currently, classified under the main classification of USPC 720. So we

retrieved the USPC 720 data, which come from the USCITES dataset (Sampat 2011) from

01/01/2000 to 12/31/2010, to establish the dataset of optical disk patent data. The
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USCITES dataset is a US patent citations dataset which is organized by a citing-cited list

format, so this study took only patent citation on the citing side into account. The data

coverage includes all U.S. patent citations in utility patents issued from 1/1/2000 to 12/31/

2010. As a result, there are 1426 patents and 2474 references collected in the USPC 720

technology category Fig. 1.

Topological properties

1. Network sparse matrix As we all know, the overall citation network is sparsely linked,

using scarcity patterns recognition, it is easier to find the features of four types of

citation-based relationships, and sparse matrix figures can sketch out the basic outline

of the networks as shown in Fig. 2.

Sparse matrix figures are constructed using a PCI matrix. A PCI matrix illustrates the

relationship between citing and cited patents, particularly showing citing patents in the

rows, and cited references in the columns. 1–1400 (the total number of patents is 1426)

illustrates the arrangement of the patent number (patents in the USA are arranged by

time, therefore their numbers also represent their order by time). Direct observation

shows the PCI (between rows 1–1200, columns 0–1200) is more concentrated. This

shows that direct citation provides better evaluation for remote patents, but not recent

patents (especially for the most recent 200 patents). For PID, the patents are more

concentrated within rows 600–1400, columns 0–600, reflecting the indirect relation-

ship have a longer patent citation time lag, due to PID requiring 2-step length links.

The PCP and PCO networks are symmetrical networks, however this study requires

PCI and PID networks to be combined, therefore we only consider cells of which

lower triangular matrix. For PCP, the patents are more concentrated within rows

400–1400 and columns 400–1400, which shows that PCP contains the more recent

patent pairs. This is evidenced by (Glänzel and Czerwon 1996): ‘‘bibliographic cou-

pling links can provide snapshots of early stages of a specialty’s evolution’’. For PCO,

the patents are more concentrated within rows 0–1000, columns 0–1000, which shows

that PCO contains the earlier, more similar patent pairs.

2. Topological measurement Network topological analysis employs various statistical

measures to characterize the topology of the citation networks (Li et al. 2007).

Network size (N, M) and density (D): network size mainly indicates the number of

nodes and number of links. From Table 2, we can observe that PCI, MUCA and CPC

contain the maximum number of patents, which explains that three kinds of network

have good network representativeness for patent analysis. A good patent evaluation

indicator usually shows advantage in representation and time distribution. However,

PIDp, PCPp and PCOp only contain 2/3 of the patent numbers, which means that they

are not suitable for patent analysis, as many patents and ties have been missed by using

PIDp, PCPp and PCOp. The number of nodes shows that PCI, MUCA, and CPC all

contain the largest subset of nodes, with 1426 patents. However PIDp, PCPp and

PCOp, with PCI reduced by approximately 1/3. MOL has multiple relationships, and

SAH is a high strength of correlation network. Therefore, they only contain 1/3 of the

PCI network nodes. Observing the SAL network, we find that it contains a large

number of ties with low association strength, which increases the risk of errors. Hence,

it is necessary to exclude SAL relationships.

Network density: The density of a network is directly related to its numbers of nodes

and links: it corresponds to the ratio of the numbers of existing to possible links. The

latter is derived by considering a fully connected network contains the same number of
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nodes. D ¼ M

N(N�1Þ. Overall, the maximum network density among all types of

networks is 0.006, which means that the optical disk citation network is a sparse

network. The density of the four types of basic citation network can be sorted as

(PCOp[ PCPp[PIDp[PCI); the order of four networks divided by filtering

standards is (MOL[ SAL[ SAH[SRL); and the PCI (0.0012) and CPC (0.0018)

have similar network densities.

Average path length, L: the average value of the shortest path length between any pair

of nodes in the network. A short average path length means that technology will move

to different parts of the graph more quickly. L ¼ 1
1
2N Nþ1ð Þ

P
i� jdij. Average path length

can be used as a criterion to judge the extent of the closeness of patent pairs between

different networks. A high L value shows a low probability of network knowledge

flow among the patent pairs, while conversely a low L value shows a high probability

of network knowledge flow. The MOL has the lowest value for L, which shows that

the MOL is a dense network and the patent pairs are dependent.

Clustering coefficient, C: a network’s clustering coefficient is the average of each

node’s clustering coefficient. A node’s clustering coefficient is the ratio of the number

Fig. 2 Sparse matrix figures of the four basic citation-based network types
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of edges between the node’s neighbors to the number of possible edges between those

neighbors. Ci ¼ 2Ei

ki ki�1ð Þ ¼ 1
ki ki�1ð Þ

P
N
j;k¼1aijajkaki. Compared with a CPC network of the

same size, this CPC network has a high clustering coefficient. This is because of the

fact that CPC integrates the explicit citations (from PCI) and implicit citations (from

PIDp, PCPp and PCOp) into a more compact citation network.

In summary, compared with the PCI network, the CPC network has significant

advantages in density, average path length and clustering coefficient by integrating the

multi types of citation relations.

3. Degree distribution Table 3 shows the descriptive statistics of patent number and

indegree of the different patent citation networks.

The indegree distribution shows the probability distribution of the number of citations

that one patent may receive. In the log–log graph, the two degree distributions show a

straight line pattern, which means that they also follow the power law distribution. But

when observing in detail, we find that the CPC network has the better goodness of fit

(the higher R2 and the lower SSE) under the log–log coordinates; the PCI network

presents a strong tail-swaying phenomenon, reflecting the instability of that network.

In contrast, the CPC network exhibits more steadiness in the convergence of tail. The

power law distribution takes the form of P kð Þ� k�c, where P(k) is the probability that

a patent has exactly k links. The power law exponent c and correlation coefficient r of

the two degree distributions are shown in Table 4.

Citation lag

The evaluation effects of citations are highly related in terms of time. For a better

understanding of citation evaluation effects from the point of view of timeliness, the

citation lag is calculated. There are two ways to look at citation lag: backwards and

forwards (Hall et al. 2001). Because backward citation lags can reflect technologies

dependent on prior art, this paper uses backward citation lags to discover the aging

characteristics of the CPC network. The backward lags focus on the time difference

between the application or grant year of the citing patent and that of the cited patents. We

can observe in Table 5 that the average citation lag of the PCI network is 45.88 months,

meaning that on average, it takes an issued patent 45.88 months to be cited as a reference.

The citation lag of the PIDp network is 68.34 months, which means that establishing the

Table 2 Topological measures
of different citation-based
networks

N number of Nodes, M number of
links, D density, L average path
length, C clustering coefficient

Network N M D L C

PCI 1426 2474 0.0012 7.531 0.058

PIDp 904 1912 0.0023 6.227 0.007

PCPp 822 3213 0.0048 4.799 0.702

PCOp 846 4444 0.0062 4.641 0.707

MUCA 1426 10,812 0.0053 4.016 0.367

MOL 463 1059 0.0049 2.597 0

SRL 1347 1634 0.0009 9.310 0.26

SAH 535 1034 0.0036 4.668 0.205

SAL 1349 7085 0.0039 4.195 0.323

CPC 1426 3727 0.0018 6.701 0.18
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indirect relationship of a patent pair requires more time, and the establishing relationships

between patent pairs of the PCPp and PCOp networks required nearly 20 months. The

average citation lag of the CPC network is 39.48 months, 7 months less than the PCI

network. The shrink of the citation lag represents that the CPC network is more suitable for

evaluating recent patent Fig. 3.

Table 3 Indegree descriptive statistics of different citation-based networks

Network Num. of
patent

Ave. of
indegree

Mean of
indegree

St.dev of
indegree

Minimum Maximum

PCI 894 1.735 1.00 2.592 0 33

PIDp 469 1.341 0.00 3.271 0 33

PCPp 623 2.253 0.00 4.516 0 50

PCOp 713 3.116 0.50 5.454 0 37

MUCA 1245 7.582 4.00 9.093 0 77

MOL 313 0.743 0.00 2.013 0 24

SRL 791 1.146 1.00 1.545 0 13

SAH 368 0.725 0.00 1.884 0 20

SAL 1125 4.968 3.00 5.868 0 41

CPC 986 2.614 1.00 4.199 0 53

There are some differences in the numbers of nodes between Tables 2 and 3; the reason is not taking some
isolated nodes into account from a degree distribution perspective

Table 4 Indegree distribution comparison of the PCI and CPC networks

Network c SSE DFE R-square RMSE

PCI 0.524 1.019e ?04 17 0.9573 24.4934

CPC 0.8202 1932 35 0.9912 7.4304

Table 5 Citation lag of different citation-based networks

Network Avg. citation lag
(by m)a

Mean citation lag
(by m)

St.dev of citation lag
(by m)

Minimum
(by m)

Maximum
(by m)

PCI 45.88 41.00 26.49 3.00 129.00

PIDp 68.34 66.00 24.20 10.00 131.00

PCPp 24.49 19.00 21.30 0.00 110.00

PCOp 27.59 22.00 21.77 0.00 114.00

MUCA 36.10 30.00 27.90 0.00 131.00

MOL 44.28 40.00 27.72 0.00 129.00

SRL 44.85 40.00 26.05 3.00 129.00

SAH 26.09 19.00 24.72 0.00 118.00

SAL 34.32 27.00 27.97 0.00 131.00

CPC 39.48 34.00 27.46 0.00 129.00

a The measure unit of citation lag is the month
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Graphic features

The above node degree based measures already assist us in understanding the some basic

topological features of networks, however, some other structural features cannot simply be

identified by the above node degree based measures, such as interconnectivity of nodes in a

graph. So it is necessary to observe in detail with the help of high-order topological indi-

cators (assortative coefficients) and graphic features in order to understand the overall

structural features of networks (Newman 2001). Figure 4 clearly shows the structural fea-

tures of the different citation-based networks. In the map of PCI, there is a clear division of

the patents into two clusters, a core cluster is located in the center of the map and a peripheral

cluster scattered around the core cluster. The core cluster and the peripheral clusters are

almost completely separated from each other. However, it seems that the peripheral cluster is

densely collected and cannot be divided. In the map of PCPp, PCOp, there is a clear

boundary between several clusters, and the situation of the dispersed clusters accords with

the multistage history of optical disk development. The optical disk technology branch

shows the trend of development, no single branch can play in the entire technology network

globally, and the whole network should present a diversified technological trend.

In the map of MUCA, which is an aggregation of multiple citation relationships, the

amount of patent information is too large to identify the structural features of the graph.

From the structural perspective, a network too dense and or too sparse, which can justified

by assortative coefficient, is no good for unveiling the structural features and is not suit-

able for evaluation. A network with an excessively high assortative coefficient would

conceal the diversity of technological innovation, underestimating the impact of the new

generation of technologies; a network with an excessively low assortative coefficient

shows that the fragmentation of the network is not conducive to the dissemination of

knowledge. The assortative coefficient of CPC is 0.4811, does not show an excessive

centralized preference, and indicates that the whole network consists of 5 clusters with

good distinction, with every cluster representing a branch of optical disk development.

Measurement verification

In order to compare the patent valuation effect of the PCI network and the CPC network,

patent family (triadic) and patent maintenance indicators of the optical disk dataset are

used to evaluate the scope and precision of the PCI network and the CPC network. The

Fig. 3 Indegree distribution comparison of the PCI and CPC networks

Scientometrics (2015) 105:1319–1346 1337

123



F
ig
.
4

C
o
m

p
ar

is
o
n

o
f

g
ra

p
h
ic

fe
at

u
re

s
o
f

m
u
lt

ip
le

ci
ta

ti
o
n
-b

as
ed

n
et

w
o
rk

s

1338 Scientometrics (2015) 105:1319–1346

123



purpose of establishing a triadic patent family indicator is to develop statistics that would

improve the quality and international comparability of the technology output indicator

(Dernis and Khan 2004), and this indicator tends to reflect the current and potential

patents’ technological value at the patent filing phrase. Previous literature has confirmed

that there are connections between the value of patent protection and the value of patented

ideas (Lanjouw et al. 1998), and patent duration tends to reflect a patent’s technological

value during the post-granting phases, so we chose these variables as the proxies for patent

valuation to test for the effects of different patent citation indicators.

A patent family is defined as a set of patents taken in various countries to protect a same

invention, i.e. related patents are regrouped into a single record to derive a unique patent

family. In this paper, we select the OECD ‘‘Triadic’’ Patent Families (TPF) dataset as one

of the proxies for patent evaluation (Dernis and Khan 2004). This dataset consists of a set

of patents filed granted by the European Patent Office (EPO), the Japan Patent Office (JPO)

and the United States Patent and Trademark Office (USPTO) that share one or more

priority applications. The second proxy of patent valuation selected is the U.S. Patent Grant

Maintenance fees dataset (USPTO 2013). These two indicators separately reflect the

renewal and the geographical scope of patents, and both are proxies frequently used for

patent evaluation.

Empirical test for TPF

In comparison with traditional indicators based on patent filings with a single patent office,

the triadic patent families cover a homogeneous set of inventions as the most important

inventions deemed to be protected by a patent by the EPO, JPO and USPTO. Therefore,

one patent with a triadic patent family reflects current and potential technological value.

This paper takes the OECD Triadic Patent Families (TPF) dataset as its patent family data

source, retrieving 1426 optical disk technology patents containing 425 patents with TPF

from the TPF database.

Comparison of TPF Coverage

From the TPF coverage, there are 894 patents with indegrees (citation frequencies [1)

containing 283 TPF patents at the PCI network. After constructing the CPC network by

aggregating the PCI network with the links of the artificial networks that have strong link

strength, the patent number of the CPC network with at least 1 indegree is raised to 986,

and the number of TPF patents contained also rises, reaching 315. The number of total TPF

patents grows from 66 to 74 % after taking the artificial networks into account.

Comparison of Logistic Regression

Logistic regression is useful when predicting a binary outcome from a set of continuous

predictor variables. Our approach is to test whether the indegree distributional differences

between the PCI network and the CPC network make a significant contribution to the

triadic patent family. To do this, we estimate the following model:

Prob Yi ¼ 1jXið Þ ¼ bXi þ ei ð22Þ

where Yi is equal to 1 if the patent Xi has a triadic patent family, and 0 if the patent Xi has

no triadic patent family. Xi is the indegree of the patent, which can come from the PCI
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network or the CPC network; ei is the intercept of the function. In the logistic regression,

the indegree of patents in the PCI network or the CPC network is regarded as the predictor

variable, and the existence of a triadic patent family (a dichotomous variable) is regarded

as the response variable, which is the proxy of indication of patent value Table 6.

From the logistic regression results in Table 7, the first thing we see is the p value for

the regression coefficients; the CPC indicator is positive and significant (0.0164*), but the

PCI indicator is not statistically significant (0.0675). As such, the CPC indicator makes a

significant contribution to the equation. Then we take a step further to compare the

goodness of fit of both models using the AIC (Akaike information criterion), which is a

measure of goodness of fit that takes the number of fitted parameters into account. The PCI

model has an AIC of 1236.1, while the AIC of the CPC model drops to 1233.7, indicating

an increase in model fit of the CPC model. These regression comparisons suggest a

statistically and qualitatively significant relationship between the CPC indicator and

whether a patent has a triadic patent family, providing information on whether a patent has

a triadic patent family above and beyond what we can infer from the PCI indicator. These

results are consistent with Yoon’s comments (Yoon and Park 2004). The scope of analysis

and the richness of potential information are limited because citation indicators take only

counts of citations into account, ignoring the internal relationship between patents; in terms

of triadic patent families, the PCI indicator is insufficient.

TPF range comparison of high indegree patents

In the PCI network, the indegree represents the number of times a patent is cited by other

patents, and equates to the bibliometric concept of ‘‘citation frequency’’, but no corre-

sponding bibliometric concept exists in the CPC network, so the article selects the indegree

of different networks as indicators of comparison.

During the process of patent evaluation, it is usually assumed that patents with high

indegree are more important, and then those important patents are filtered out by setting a

threshold in order to identify patents with high value. Therefore, the key to determining a

patent evaluation method lies in whether the high indegree patents obtained by the new

network method show good representativeness. As shown in Table 7, there are 39 patents

with TPF in the top 11 % of the PCI network ranked by indegree distribution, and there are

43 patents with TPF in the top 10 % patents of the CPC network. When the ranking

expanded to the top 20 %, it still maintained a similar ratio in both networks. It is clear that

a high indegree in the CPC network contains broader TPF coverage than the PCI network.

As a result, the CPC network has an advantage in patent evaluation over the PCI network

within the TPF Table 8.

Table 6 Assortative coefficients
of different citation-based
networks

Network Assortative coefficient Network Assortative coefficient

PCI 0.8156 MOL 0.8734

PIDp 1.4351 SRL 1.4730

PCPp 0.4574 SAH 0.5072

PCOp 0.3416 SAL 0.4811

MUCA 0.4148 CPC 0.4295
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Empirical test for MFE

Generally, patents represent the legal right to exclude others from claiming the rights to an

innovation. If patentees want to maintain this protection, they must pay periodic renewal

fees in order to keep their patents in force. The renewal data directly reflects the incentives

underlying the application and renewal processes. This explains that the more valuable an

invention, the longer its patent will remain active. Therefore, we can use the renewal data

to evaluate the value of patents. This paper takes the U.S. Patent Grant Maintenance Fee

Events File (MFE) as the source of patent renewal data. We collected data from the MFE

and compared it with the original optical disk technology patent data, and as a result there

are 1426 patents. In the USPTO there are three patent maintenance fees that are required

during the life of patent in order to maintain the validity of that patent. These fees are due

at 3�, 7� and 11� years from the patent’s granting, and this is used to identify the patent

renewal term. The paper assumes that a patent is worth paying the renewal fees for at 7�
and 11� years from when the patent is granted (Lanjouw et al. 1998) Table 9.

Comparison of MFE Coverage

Looking at duration of patent renewal, the whole MFE data of optical disk patents have

833 patents with 3� years, including 483 patents with 7� years and 110 patents with

11� years. The PCI network has 371 patents with 3� years, and has 414 patents with

7� years, and 109 patents with 11� years. The CPC network has advantage in patent

Table 7 Comparison of Logistic Regression results

Model Variables Estimate Std. error z value Pr ([|z|) AIC

PCI model (Intercept) -0.8672 0.0921 -9.413 \2e-16 *** 1236.1

PCI 0.0433 0.0237 1.829 0.0675

CPC model (Intercept) -0.8855 0.0878 -10.08 \2e-16 *** 1233.7

CPC 0.0247 0.0102 2.40 0.0164 *

Asterisks indicate statistical significance, with * indicating significance at the 5 % level, and *** indicating
significance at the 0.1 % level

Table 8 TPF range comparison with different indegree distribution

PCI network CPC network

Percentage of
cumulative indegree
distribution (%)

Indegree
interval

Counts of
triadic patent
families

Percentage of
cumulative indegree
distribution (%)

Indegree
interval

Counts of
triadic patent
families

11 6–33 39 10 9–53 43

23 4–33 66 25 5–53 86

36 3–33 102 32 4–53 107

57 2–33 165 44 3–53 141

100 1–33 283 62 2–53 199

100 1–53 315
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duration on 7� years, which means that the CPC network has broader range at the longer

renewal patent level.

MFE range comparison of high indegree patents

The author takes MFE data as a proxy of patent valuation in order to check the measure

effect of the different network. Due to there being no existing fair and equitable standard

for verification of patent evaluation, this paper takes MFE data as a proxy for patent

valuation, as MFE data reflect patents’ temporal scope of protection are correlated to the

R&D cost of products.

It is generally recognized that a highly cited patent is more important, so researchers

take it for granted that a patent with higher indegree of the PCI network should have a

longer duration. However, by comparison as per Table 10, we have found that the results

do not conform to this assumption. We can learn from Table 10 that the top high-indegree

patents in the CPC network (indegree interval is 9–53) accounted for 10.24 %, covering 93

long-term renewal patents (7� and 11� years); in contrast, the top high-indegree patents

in the PCI network only cover 15 long-term renewal patents (7� and 11� years). The top

Table 9 Duration comparison of
the PCI and CPC networks

Due day (year) PCI network CPC network MFE

at 3� 109 109 110

at 7� 414 432 483

at 11� 371 445 833

Total 894 986 1426

Table 10 MFE coverage comparison of the PCI and CPC networks

Network Indegree
interval

Percentage of
cumulative
indegree
distribution (%)

Patent renewed at Percentage of
cumulative
long-term
patents (%)

Total

3� year 7� year 11� year Long-
term

PCI
model

13–33 9.74 0 7 8 15 3 15

9–33 20.17 2 26 13 39 7 41

7–33 29.51 5 43 24 67 13 72

6–33 37.51 10 70 25 95 18 105

5–33 46.40 20 99 30 129 25 149

4–33 55.62 35 130 41 171 33 206

3–33 69.08 61 196 66 262 50 323

2–33 84.28 140 280 85 365 70 505

1–33 100 371 414 109 523 100 894

CPC
model

9–53 10.24 8 69 24 93 17 101

6–53 18.55 32 119 29 148 27 180

4–53 32.35 83 185 51 236 44 319

3–53 44.32 127 246 64 310 57 437

2–53 62.07 216 311 85 396 73 612

1–53 100 445 432 109 541 100 986
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20 % high-indegree patents of the PCI network cover only 7 % of long-term renewal

patents, while the top 19 % high-indegree patents of the CPC network cover 27 % of long-

term renewal patents. Thus the CPC network shows a fourfold increase over the PCI

network in precision of predicting which patents have a longer duration. Hence single

citation analyses are insufficient for revealing patent value.

Overall, our findings on MFE data are mixed. From comparison of MFE coverage, there

appears to be no difference between the two networks. However, when we give an insight

into the specific indegree interval, the response to renewal term of the CPC model seems to

be more sensitive than that of the PCI model. One possible explanation for these findings is

that CPC integrates the explicit and implicit knowledge flows into a more compact citation

network, so that the indegree of the CPC model can be more responsive to the renewal term

of patents. In fact, sensitivity of the model might be more important when the volume of

data is large.

Conclusions and limitations

In this paper, four single patent citation networks—direct citation, indirect citation, cou-

pling and co-citation networks—were combined, filtered and recomposed by relational

algebra, and then a method based on the comprehensive patent citation (CPC) network for

patent evaluation was proposed. Empirical research into optical disk technology related

patents was carried out according to this method, showing that the CPC network maintains

the advantages of direct citation, which shows better performance in topological structure,

graphic features, centrality distribution and citation time lag. According to these

descriptive statistics, we find that the approach of comprehensive patent citation can go

well beyond simple patent counts and traditional citation analysis as a means to reveal

information on the complex, interrelated and cumulative processes of patent technological

value, pointing to the specific citation based information reflect different aspects of patent

value, and single citation analyses are insufficient for revealing the patent value.

The results confirm that the number of citations a patent application receives in sub-

sequent patent applications is strongly associated with the technological value of the patent

(Harhoff et al. 1999; Trajtenberg 1990). Firstly, we examined the topological properties

and degree distribution of the PCI network and the CPC network. The measures for citation

networks display the non-uniformity feature of citation. The results are concordant with

those of Li et al. (2007). Then we rechecked the issue of ‘‘citation lag,’’ as proposed by

Hall et al. (2001), by comparing sparse matrix figures and citation lag statistics of different

networks. The average citation lag is very long, which undermines the timeliness and

reliability of patent value evaluation. We also validated the issue of ‘‘missing links,’’

proposed by Chen et al. (2011) and by Wilson (1995), by comparing the coverages of two

patent quality indicators. The above examinations reinforce the idea of incorporating the

multiplex citation network to fill the gaps left by the single patent citation network.

Futhermore, we find that the indegree coefficient significance of the CPC network has a

slight advantage over that of the PCI network, and that the indegree of the CPC model can

be more responsive to the renewal term of patents. In fact, sensitivity of the model might

be more important than goodness of fit of full samples when the volume of data is large.

This finding shows that links missed out of the patent direct citation network may contain

some important information, and it is necessary to improve the current direct citation
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analysis approach. By using the approach of establishing the CPC network as described in

this paper, patent citation analysis can be applied more appropriately to the future research.

There are many directions with regard to the CPC network that could be developed

further. In this paper, the author only compared the characteristics of the CPC network with

the PCI network, and not other networks mentioned above (i.e. PIDp, PCPp and PCOp);

more detailed comparisons need to be studied in depth, followed up by understanding the

whole citation network. Furthermore, in terms of selection of citation data, family-level

patent citation may be more suitable for patent technological valuation. However, due to

the USCITES dataset not providing family-level citation data, it is difficult for this study to

adopt family-level citation data to improve the model. In the future, we will take a step

further to test for family-level citations using a more complete dataset. Meanwhile, all

matrix transformation, processing, and integration in the paper is based on binary matrixes,

ignoring the weight features of different types of network, which also may cause impre-

cision in patent evaluation. These issues need to be studied in depth.
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