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A B S T R A C T

Supporting different payloads has been shown to be effective for developing a multitasking
manipulator. This paper presents a method for designing a planar, statically balanced,
articulated manipulator for supporting variable payloads. The balancing equations for the
gravitational and spring elastic energies are developed using a stiffness block matrix, which
represents interacting potential energies between the links. It is shown that the springs can be
classified according to the roles they play in the balancing equations. Thus, the installation
parameters can be divided into payload-dependent parameters (PDPs) and payload-independent
parameters (PIPs). The admissible spring configurations for supporting variable payloads are
determined using the required number of PDPs, and PDP adjustment devices are used to adjust
PDPs as the payload changes. Based on the interrelation between PDPs and PIPs, the number of
PDPs can be reduced through proper arrangement of PIPs. The displacement of different PDPs
can be equalized to fit attachment points in the same adjustment device. Therefore, the number
of PDP adjustment devices is minimized to one. Variable-payload balanced articulated
manipulators with five springs and three degrees of freedom are shown as illustrative examples.
The energy consumption is estimated accordingly.

1. Introduction

Statically balanced manipulators maintain equilibrium in any configuration. In recent years, several methodologies have been
proposed to compensate for the weight of linkages. One such method is the counterweight method that balances a manipulator by
supplying counterweights that cancel out the effect of link mass; however, this increases the system's inertia, and the operation may
be worsened [1–4]. Another method is the spring-balancing method that uses spring forces to compensate for gravitational forces;
consequently, the system's inertia remains small [5–10].

One of the spring-balancing approaches is to use auxiliary linkages. The method of parallelogram links ensures that vertical
members exist at the end of each link. Therefore, a manipulator with multiple degrees of freedom (DOF) can be considered as a
series of connected 1-DOF manipulators [11–14]. Agrawal et al. applied auxiliary parallelograms to human upper arm orthotic
devices [15], human leg orthotic devices [16], and assistive devices for sit-to-stand tasks [17] to support people experiencing muscle
weakness. This method can be further applied to spatial parallel platform mechanisms [18–21], and delta robots [22,23] to enhance
their low-dynamic performance levels. However, auxiliary linkages tend to increase the inertia of the system. Also, the range of
motion may be limited. For the improvement of these problems, Lin et al. proposed a stiffness block matrix (SBM) to explore the
potential energies interacting between links of multiple-link planar articulated manipulators [24–26]. Those interacting potential
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energies can be compensated by various approaches without auxiliary linkages. Although the configurations of springs may be
relatively complex, the locations at which those springs must be installed can be derived easily. Therefore, the aim of this paper is to
determine the location of the springs.

With the increasing usage of support or assistive equilibrators, supporting variable payloads has been shown to be effective for
multitasking manipulators, such as robotic arms, surgical light assistance devices, and monitor support devices. Therefore, balanced
devices that support variable payloads have been developed. To maintain static balance, the spring configuration should be altered
for different payloads. Nathan proposed a static balancer in which spring attachment points can be self-adjusted [27]. Herder et al.
proposed several energy-free adjusting concepts such as virtual springs [28], simultaneous displacement [29], spring stiffness [30],
and storage springs [31]. Takesue et al. focused on the spring configuration of variable gravity compensation mechanisms. Two types
of springs with a 90° phase difference can be used to compensate for variation in gravity without using wires [32]. Energy-free design
is not a major concern in this context; adjustments may consume energy, some extra energy may be allowed into the system during
the adjustment of the attachment points. However, these methods are focused on the compensation of gravitational and elastic
forces between ground and ground-adjacent links. Information about interacting potential energies between multiple links is not
sufficient. The designs of the auxiliary linkages may require alterations to adapt them to the needs of a multiple-link manipulator.
Therefore, this paper focuses on the spring configuration of multiple-link planar articulated manipulators and estimation of the
energy consumption during adjustment.

The method proposed in this paper is based on the SBM approach [24]. Previous studies of the SBM approach [24–26] have
mainly focused on the compensation of fixed gravitational potential energy. In the present paper, however, the SBM approach is
generalized for variable payloads. The adjustable installation parameters in the balancing equations, which must vary with the
changes of the payload, are called payload-dependent parameters (PDPs). By contrast, the installation parameters for fixed locations
are defined as payload-independent parameters (PIPs). The process of this paper is roughly summarized as follows. On the basis of
the interrelation between the PDPs and the PIPs, the displacement of the PDPs can be expressed as a linear equation and the number
of PDPs can be reduced through the proper arrangement of associated PIPs. Therefore, the PDP adjustment device can be
implemented as a slider that can lock at any position along a perpendicular slide rail. Furthermore, all PDPs can be fitted on the
same PDP adjustment device to minimize the required number of adjustment devices to one. The energy consumption during the
adjustment is estimated based on the simulation results of the variation of total potential energy for a variable payload.

The remainder of this paper is organized as follows. Section 2 introduces the formulations of the elastic potential energy and
gravitational potential energy represented by the SBM. On the basis of the summation of the gravitational and elastic SBMs, the
spring installation parameters are classified according to the roles they play in the balancing equations. Section 3 describes the
general criteria for admissible spring configurations for an n-link variable-payload manipulator (VPM). According to the number of
required PDPs, balancing equations are derived from the nonzero component matrices of the summation of the gravitational and
elastic SBMs. The formulation of the PDPs and PIPs is then explored according to the spring configuration. Section 4 expresses the
displacement terms of the PDPs as an equation in terms of the PIPs. Some additional criteria for the installation of PIPs are
determined to reduce and equalize the nonzero displacement PDPs. Section 5 presents the derivation of a planar 3-DOF VPM with
five springs as a design example. The static equilibrium of quasistatic continuous motion is verified, and the energy consumption is
estimated accordingly.

Fig. 1. Center of gravity position pj of the n-link planar articulated manipulator and changeable payload fitted at the end effector of link n and Sik, the spring
connected between link i and link k.
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2. Characteristics of SBM

2.1. SBM

The coordinate system is defined in the Denavit-Hartenberg representation, shown in Fig. 1. The term rj denotes the direction
vector of link j of an n-link manipulator. The terms xj and yj are unit orthonormal axis vectors, where j = 1, 2, …, n. The terms rj, xj,
and yj are defined to be 2×1 column matrices for 2D space. R(θj) represents the rotation matrix of the succeeding and preceding
coordinate systems, where θj is the joint angle from the x(j − 1) axis to the xj axis. Therefore, the change in the succeeding coordinate
system can be determined according to the rotation of the preceding link.

2.1.1. Characteristics of gravitational SBM
The SBM method was proposed in previous studies for analyzing a statically balanced articulated manipulator with fixed

potential energy [24,26]. The term mj represents the mass of link j; pj represents the position vector of the center of mass aligned
along the line passing through the joints of links; and g represents the gravitational acceleration; I′ represents the rotation matrix
that rotates 270°. The gravitational potential energy Ug is expressed as

∑U m g p= −g
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where rj is the direction vector of link j, and sj is the vector from joint (j – 1) to the center of mass of link j, and its orientation is the
same as that of direction vector rj. In addition, rj and sj are the magnitudes of rj and sj, respectively.

In this study, variable payloads are embedded at the end effector of the articulated manipulator. Therefore, the gravitational
potential energy consists of the sum of the gravitational energy values of links and variable payloads. The term mp represents the
mass of the payload, which is variable; and pp represents the position vector of the variable payload fitted at the end effector of link
n. The gravitational potential energy Ug is rearranged as

∑U m mg p g p= − −g
p p

j

n

j j
T T

=2 (3)

where

∑p r=p
v

n

v
=1 (4)

According to Eqs. (1–4), the SBM representation for the gravitational potential energy can be obtained as
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where [Guv] is called the gravitational SBM, and its elements Guv are called gravitational component matrices, which represent
gravitational potential energies interacting between links u and v. Owing to its symmetry [18], Guv can be expressed as an SBM, as
shown in Eq. (6), and only the upper triangular matrix is considered.
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The gravitational component matrices G1v are expressed as
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where Wv is the sum of the masses of links from v to n. Each component matrix Guv in the gravitational SBM represents the
quantity of the gravitational effect that acts between the ground (link 1) and link v.
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2.1.2. Characteristics of elastic SBM
The spring configuration matrix [Sik] represents the configuration of fitted springs in an n-link SBM. Sik = 0 denotes that there is

no spring installed between links i and k, and Sik = # (for # ≠ 0) denotes that at least one spring is installed between links i and k.
The expression of elastic potential energy was suggested by Lee et al.[24]. A zero-free-length spring with spring constant kik,

fitted between links i and k of an n-link articulated manipulator, is shown in Fig. 1 as Sik. Assume that the springs used are zero-free-
length springs, and the distance between two attachment points |xik| can be considered the elongation of the spring. The elastic
potential energy can be expressed as

U k x x= 1
2

ik
ik ik

T
ik (8)

where
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aik and bik are proximal and distal installation parameters, respectively. Their position vectors extend from the joints of links i and
k, respectively, to the attachment points of the spring, and they can be expressed as
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where R(αik) and R(βik) are 2×2 rotation matrices, and αik and βik are the attachment angles from ri to aik and from rk to bik,
respectively. Note that for the special case for springs with i = 1, as shown in Eq. (10a), x1 is the length of unit vector x1, hence, it
equal to 1. According to Eq. (8–10), the SBM representation for the elastic potential energy can be obtained as
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where [K ]uv
ik is called the elastic SBM of spring Sik, and the elements Kuv

ik are called elastic component matrices, which represent
elastic interacting potential energies between links u and v. Because [K ]uv

ik is a symmetric matrix, only the upper triangular matrix is
considered as represented in the following:

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

K

0 0
K K K

K K

K
0

[ ] =

⋯
⋯ ⋯
⋱ ⋯

⋱ ⋮ ⋮
⋱ ⋮

uv
ik

ii
ik

iv
ik

ik
ik

uv
ik

uk
ik

kk
ik

(12)

The off-diagonal terms of the elastic component matrices Kuv
ik (for u ≠ v) are expressed as
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The diagonal terms of the elastic component matrices Kuv
ik (for u = v) are expressed as
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Each elastic component matrix Kuv
ik shows the quantity of the elastic effect of the spring Sik between links u and v. The elastic

potential energy of the spring affects only the links that it spans, the nonzero elements of Kuv
ik are within the range i ≤ u, v ≤ k.
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2.2. Static balance of total SBM

The gravitational and elastic potential energies change with the relative angular displacement between links u and link v, as
shown in Eq. (15). To keep the total potential energy unchanged regardless of the configuration of the manipulator, all component
matrices between any two distinct links (u ≠ v) must be zero matrices.

θ r r= cos ( )uv u
T

v
−1 (15)

Because the gravitational and elastic potential energies both have the same form, the total potential energy [Tuv] can be
expressed as the sum of the gravity and elastic SBMs, and Tuv denotes the total component matrices, which represent total potential
energies between links u and v.

The gravitational potential energy induces nonzero elements in the first row of Tuv (for u = 1) only. The associated spring Sik (for
i = 1) with nonzero elements in the first row is required to balance Guv (for u = 1). Therefore, the first row of the total component
matrices can be expressed as
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The gravitational component matrix includes the gravitational values of variable payloads. To calculate the balancing equation of
T1v as scalar, the ground-attached end of spring S1k must be installed at angle α1k = 90° or 270°, and the link-attached end must be
installed at angle β1k = 0° or 180°. Therefore, the rotation matrix I′ can be ignored during the calculation. The elastic component
matrices Kuv

1k of spring S1k can be rearranged as
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where A1k and B1k are determined to represent dimensionless installation parameters expressed as
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The design parameters of spring S1k include one spring constant k1k and two installation parameters A1k and B1k. The
installation parameter B1k is fitted in both first-row and non-first-row component matrices, and it is attached to the non-ground link.
Therefore, the adjustment of B1k would additionally influence the non-first-row component matrices and interfere with the motion
of links. However, the installation parameter A1k is fitted in first-row component matrices only and is attached to the ground.
Therefore, the adjustment of A1k can avoid these problems. Thus, the installation parameter A1k is known to be adjustable for
variable payloads.

For the non-first-row elements of Tuv (for u ≠ 1), gravity has no influence but the ground-adjacent springs have elastic influence.
Therefore, spring Sik (for i ≠ 1) must be installed to generate a counterbalancing force in the non-first-row parts to compensate for
the influence of the nonzero elements of Kuv

1k (for u ≠ 1).
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Similarly, because the attachment angle of component matrix Kuv
ik (for i ≠ 1) is defined as β1k = 0° or 180°, the attached end of the

counterbalancing spring Sik should be installed at angles α1k = 0° or 180° and β1k = 0° or 180°, so the rotation matrix I can be
ignored during the calculation. The elastic component matrices Kuv

ik of the counterbalancing spring Sik can be rearranged as
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where Aik and Bik are determined to represent dimensionless installation parameters as
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In conclusion, the installation parameters are separated into three types according to their balancing objectives and positions.
For a ground-adjacent spring, the ground-attached installation parameter A1k is a PDP, and the link-attached installation parameter
B1k is a distal PIP. For a non-ground-adjacent spring, the installation parameter Aik is a proximal PIP, and Bik is a distal PIP. The
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positive and negative directions of the PDPs and PIPs are determined as (90°, 270°) and (0°, 180°), respectively, as shown in Fig. 2.
In addition, to enable adjustment, the PDPs must fit on PDP adjustment devices. PDP adjustment devices are used to adjust PDPs,
and they can be locked at any position along the vertical axis, as shown in Fig. 2.

3. Determination PDP and PIP arrangements

3.1. Arrangement of PDPs

According to Sections 2.2, only ground-adjacent springs contain PDPs. In this section, the characteristics of PDPs are obtained by
analyzing the equations of the first row of the total SBM [Tuv]. To increase the efficiency of the adjustment when a payload is
changed, the PDP terms should form a linear equation that is linear with respect to the change of payload. For a set of balancing
equations with linear solutions, the number of unknowns must be equal to the number of subsets of equations. To enable the set of
PDPs of the form A1k to be adjustable for variable payloads mp, A1k is determined to be unknown for the simultaneous equations of
the entries in the first row.

The balancing equations of the first row component matrices of Tuv contain (n – 1) component matrices, T12 to T1n. Therefore,
(n – 1) equations are in the first row. For each fitted spring S1k, one distinct unknown of PDP A1k is added to the system. A total of (n
– 1) springs should be connected to link 1; therefore, the total component matrices T1v (for v = 2, …, n) can be rearranged as
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All component matrices in Eq. (22) have the same orientation. Consequently, subset equations can be solved regardless of the
orientation. The subset equations have the form of a first-order linear system. Therefore, Eq. (22) can be expressed as the matrix
form of a linear system.
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The solutions of PDP A1k (for k = 2, …, n) can be arranged as a subset of the linear equations of payloads, which can be expressed
as

A C m D for k n= + = 2, ... ,k k p k1 (24)

where Ck is the coefficient of the payload, which represents the displacement of the PDP according to the payload, and Dk is the
constant of the PDP, which represents the initial position of the PDP. In addition, Dk is determined by the constants of PDPs
succeeding it. Ck and Dk can be expressed as

⎛
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k B B
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Fig. 2. Definitions of the directions of PDPs, proximal PIPs, and distal PIPs; schematic of a PDP adjustment device.
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According to Eq. (25a–b), the PDPs are separated into two sets. The first set is used to balance the gravitational potential energy
of variable payloads mp. The second set is used to balance the constant gravitational potential energy of the links. Thus, the
configuration of ground-adjacent springs has the characteristic CH1.

CH1: For an n-link VPM, (n – 1) PDPs are used to compensate for the variations in the potential energies owing to changes in
the payload. These PDPs are linear functions of the payload and can be formed by installing (n – 1) ground-adjacent springs; that is,
(for all k = 2, …, n) S1k of an n × n spring configuration matrix is nonzero.

3.2. Arrangement of PIPs

The spring embedded between the ground and the end link produces nonzero terms in all components of the elastic SBM.
However, only the terms in the first row are used to compensate for the gravitational potential energies; the other terms are excess
elastic potential energies that are compensated by non-ground-adjacent springs.

Before installing non-ground-adjacent springs, it is necessary to identify the distribution of excess elastic potential energies in the
relevant elastic SBM. According to CH1, ground-adjacent springs S12 to S1n are installed, and the sum of their non-first-row elastic
SBM terms has the same equations in the same column, as shown in Fig. 3 and Eq. (26). Pv (for v = 3, …, n) represents the excess
elastic potential energies of the ground-adjacent springs in column v.
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According to Eq. (26), the excess elastic potential energies between column 3 and column (n – 1) can be balanced by setting the
distal PIPs B1k (for k = 3, …, n) to negative values that can be formed by setting their distal attachment angles β1k = 180°. However,
because of the constraint that B1n cannot equal zero, spring S2n must be installed to compensate for the excess elastic potential
energies in column n. Therefore, the installation of spring S2n entails the characteristic CH2.

CH2: For an n-link VPM, a spring must be connected between link 2 and link n to compensate for the excess potential energies
between link n and the links preceding it; that is, S2n of an n×n spring configuration matrix must be nonzero.

Therefore, after the installation of spring S2n, the final column of the non-first-row total SBM can be rearranged as

⎧⎨⎩
k A B k B k A B u
k B k B k B u n

T
P I I
P I I=

+ = ( − ) = 0 = 2
+ = ( + ) = 0 = 3, ... , − 1un

n n n n n n n n n

n n n n n n n

2 2 2 1 1 2 2 2

2 2 1 1 2 2 (27)

If the distal PIP B1q (where q denotes a number between 3 and n) is set as a positive value (i.e., distal attachment angle β1q = 0°),
spring S2q must be installed, and its distal PIP B2q must be set to a negative value (i.e., distal attachment angle β2q = 180°) to
compensate for the excess elastic potential energy. Therefore, the distal PIP of springs S1q and S2q (for 3 ≤ q ≤ n) has characteristic
CH3.

CH3: For an n-link VPM, if the distal PIP of S1q is not attached in the negative direction of link q, a spring with a distal PIP
attached in the negative direction is required to fit between links 2 and q (where q denotes a number between 3 and n).

If spring S2q is not installed, column q of the non-first-row total SBM can be rearranged as

⎛
⎝⎜

⎞
⎠⎟k B k k u q and q nT I= + ∑ + ∑ = 0 = 2, ... , − 1; 3 ≤ ≤uq q q j q

n
j j q

N
j1 1 = +1 1 = +1 2

(28)

If spring S2q, is installed, column q of the non-first-row total SBM can be rearranged as

Fig. 3. Distribution features of the summations of the elastic SBM terms of ground-adjacent springs.
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(29)

where N denotes the number of springs that have been installed between link 2 and the links succeeding link q. For example, if
springs S24 and S26 are installed, N = 4 and 6 should be considered in the balancing equations of T23.

According to Eqs. (27) and (29), after the installation of the springs connected between link 2 and the links succeeding link 2, the
balancing equation in row 2 is different from those in the other rows. To solve the sequence of balancing equations without installing
other springs Sik (for i ≠ 1, 2), each term in the same column should be the same as the term in its elastic SBM, and this can be
achieved by setting its proximal PIP as A2q = –1 (i.e., position a2q = r2 and attachment angle a2q = 180°). Therefore, the distribution
features of the nonzero terms are as shown in Fig. 4. Note the following exceptional case: The elastic SBM of spring S23 is fitted in
one field, it corresponds to one balancing equation only. Consequently, its proximal PIP A23 can be set at an arbitrary position.

Therefore, the sequence of balancing equations in column q of the non-first-row total SBM can be rearranged into a single
equation as follows:
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(30)

The proximal PIP of spring S2q (for 4 ≤ q ≤ n) has the characteristic CH4.
CH4: For an n-link VPM, the proximal PIP of S2q must be attached to joint 1 to compensate for the excess elastic potential

energy without fitting non-ground- and non-link-2-adjacent springs; that is, Sik (for i, k ≠ 1, 2) of an n × n spring configuration
matrix should be zero.

According to CH1–4, the spring configurations that can be applied for the VPM are

⎧
⎨
⎪⎪

⎩
⎪⎪

S

for i k n
or for i k n

for i k n
for i k

=

# ( = 1, = 2, ... , )
# 0 ( = 2, = 3, ... , − 1)
# ( = 2, = )
0 ( , ≠ 1, 2)

ik

(31)

According to Eq. (31), the admissible spring configurations of 2-, 3-, and 4-DOF VPMs are derived and shown in Tables 1 (2-A),
(3-A), (3-B), (4-A), (4-B), (4-C), and (4-D).

For a general arrangement with general displacement (i.e., the coefficients of PDPs are different), the number of required PDP
adjustment devices is equal to the number of ground-adjacent springs, which is expressed as

N n= − 1p (32)

An example of a 3-DOF VPM with five springs is derived. The spring configuration matrix contributed by five springs is denoted
as (3-B) in Table 1. The balancing equations of the off-diagonal upper triangular portion of the total SBM can be derived accordingly.
T12, T13, and T14 are the balancing equations of the gravitational and elastic potential energies, and T23, T24, and T34 are those of the
excess potential energies.

W gm k A B k A k AT = − − − − − = 0p12 2 12 12 12 13 13 14 14 (33a)

W gm k A B k AT = − − − − = 0p13 3 13 13 13 14 14 (33b)

W gm k A BT = − − − = 0p14 4 14 14 14 (33c)

k B k k A k A BT = + − − = 023 13 13 14 24 24 23 23 23 (33d)

k B k A BT = − = 024 14 14 24 24 24 (33e)

Fig. 4. Distribution features of nonzero terms in the elastic SBM with attachment point ɑ2q = r2 and attachment angle α2q = 180° (for q > 3).
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Table 1
Schematics of admissible arrangements of PDP adjustment devices for 2-, 3-, and 4-DOF VPMs.
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and

k B k BT = + = 034 14 14 24 24 (33f)

According to Eq. (33a–e) and CH1–4, the PDPs and PIPs can be expressed as

A g
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m
k B

W= − − 1
p14

14 14 14 14
4

(34a)
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B= −14
24

14
24

(34d)

B
k A B k k

k
=

− −
13

23 23 23 14 24

13 (34e)

and

A = − 124 (34f)

where B12, B24, A23, and B23 are free variables that can be predetermined arbitrarily.
The general arrangement of the VPM is derived from the basic design equations of PDPs and PIPs. Because the number and

displacements of PDPs are derived in general, (n – 1) PDP adjustment devices should adjust the system for A12 to A14 separately.
However, some specific characteristics can reduce the number of PDP adjustment devices. This is discussed in the next section.

4. Minimal number of PDP adjustment devices

For the design of an n-link VPM, (n – 1) PDP adjustment devices are considered to be adjustable when the payload changes. As
the number of PDPs increases, the adjustment of associated springs becomes more difficult. To avoid this situation, minimization of
the number of PDP adjustment devices is discussed in this section.

4.1. Reduce the number of PDPs

According to Eq. (25a), (1 – 1 /B1q) is contained by a series of coefficients C1k (for k = 2, …, q – 1). When B1q = 1 (i.e., position
b1q = rq and angle β1q = 0°), the coefficients C1k of the PDPs preceding link q equal 0, and (q – 2) PDPs are then eliminated.
Therefore, for a system with a reduced number of PDPs, the necessary condition CH5 applies.

CH5: For an n-link VPM, (q – 2) PDPs are eliminated by setting the distal PIP of S1q attached at joint q (where q denotes a
number between 3 and n).

However, CH3 reveals that to set B1q at joint q, a spring S2qmust be installed, and its distal PIP must be set at angle β2q = 180°.
A schematic of this arrangement is shown in Fig. 5(a).

For the general displacement, the number of PDP adjustment devices required is the same as the number of remaining PDPs, as
expressed by

Fig. 5. Arrangements for reducing the number of PDP adjustment devices: (a) Reducing the number of PDPs; (b) Equivalent displacement of PDPs.
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N n q If S q n= − + 1 ( = #, 3 ≤ ≤ )p q2 (35)

The number of nonzero terms in the second row of the spring configuration matrix indicates the number of different
arrangements for the reduced number of PDPs. With respect to the general arrangement, the arrangements for the reduced number
of PDPs are shown in Table 1 with the symbol (R), as (2-A-R), (3-A-R), (3-B-R1, R2), (4-A-R), (4-B-R1, R2), (4-C-R1, R2), and (4-D-
R1, R2, R3).

4.2. Equivalent displacement of PDPs

For a VPM with more than one PDP, the equivalent displacement is designed to make the coefficients of the PDPs equal.
Therefore, these PDPs can be set on the same PDP adjustment device. The equivalence equation of the coefficients of two adjacent
PDPs is given as

C C q n= 3 ≤ ≤q q−1 (36)

By rearranging Eq. (36), the relationship between two distal PIPs B1q and B1(q – 1) is shown as

B
k

k
B q n= + 1 3 ≤ ≤q

q

q
q1

1( −1)

1
1( −1)

(37)

Therefore, two adjacent PDPs can be fitted in the same PDP adjustment device so that they can be adjusted simultaneously; a
schematic of this arrangement is shown in Fig. 5(b). For equalizing the displacements of adjacent PDPs, the necessary condition CH6
is applied.

CH6: For each pair of adjacent PDPs in an n-link VPM, the displacements of those two adjacent PDPs can be equalized by setting
the distance between the distal PIP of S1q and joint q as the product of the distal PIP of S1(q – 1) and spring constant ratio of S1(q –

1) and S1q (for 3 ≤ q ≤ n).
Because the displacements within each pair of adjacent PDPs can be equal, the displacements of all PDPs can be equalized by

setting their distal PIPs in the relation expressed by Eq. (37). With respect to the general displacement, the arrangement for the
equivalent displacement is shown in Table 1 with the symbol (E). The number of required PDP adjustment devices is minimized to
one.

The arrangement of the combined method for CH5 and CH6 is valid. CH5 reveals that an additional constraint (B1q = 1) should
be considered. To equalize the displacement of the remaining PDPs A1k (for k = q,…, n), their distal PIPs B1k (for k = q,…, n) should
be greater than 1 (i.e., position b1k > rk and distal attachment angle β1k = 0°). Thus, springs S2k (for k = q+1, …, n) must be
installed to ensure that the design is feasible.

The method of minimizing the number of PDPs is available for every situation. For the arrangement of a multi-PDP VPM with
general displacement shown as (2), (3-A), (3-B), (3-2-R1), (4-A), (4-B), (4-C), (4-C-R1), (4-D), (4-D-R1), and (4-D-R2) in Table 1,
their displacements can be equalized as shown in (2-E), (3-A-E), (3-B-E), (3-B-R1-E), (4-A-E), (4-B-E), (4-C-E), (4-C-R2-E), (4-D-E),
(4-D-R1-E), and (4-D-R2-E), respectively. However, there is an exceptional case,(4-B-R1): because spring S24 = 0, the displacement
of A13 cannot be equal to the displacement of A14. It is only for certain special conditions that the number of PDPs cannot be reduced
to one.

According to CH5 and CH6, the example of arrangement (3-B) shown in Section 3 can be redeveloped to reduce the number of
required PDP adjustment devices. It is shown that arrangements (3-B-R2), (3-B-E), and (3-B-R1-E) require only one PDP
adjustment device. Therefore, these three arrangements are derived as further examples.

For the arrangement (3-B-R2), the additional constraint B14 = 1 should be considered. PDPs A12 and A13 are then eliminated, and
Eq. (34a–f) can be rearranged as
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and
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B
k
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= −24
14

24 (38g)

where B12, A23, and B23 are free variables that can be predetermined arbitrarily.
For the arrangement (3-B-E), the equivalent displacements of PDPs can be derived on the basis of Eq. (37). Thus, the coefficients

C2, C3, and C4 are the same, and Eq. (34a–f) can be rearranged as
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where A23 and B14 are free variables that can be predetermined arbitrarily.
For the arrangement (3-B-R1-E), B13 = 1 and Eq. (37) should be considered. PDP A12 is eliminated, and the coefficients C3 and C4

are the same. Eq. (34a–f) can be rearranged as
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Table 2
Inertia and dimensional parameters of the 3-DOF manipulator.

j mj (kg) rj (m) sj (m)

2 0.162 0.2 0.07
3 0.162 0.2 0.07
4 0.122 0.15 0.053

Table 3
Associated spring constants and attachment angles.

(a) 3-B-R2 arrangement (a) 3-B-E arrangement (a) 3-B-R1-E arrangement

ik kik(N/m) αik(°) βik (°) kik (N/m) αik(°) βik(°) kik(N/m) αik(°) βik(°)
12 300 270 180 300 90 180 100 270 180
13 200 270 180 100 90 180 25 90 0
14 100 90 0 100 90 0 100 90 0
23 300 180 180 300 180 180 600 180 180
24 200 180 180 200 180 180 300 180 180

W.-H. Chiang, D.-Z. Chen Mechanism and Machine Theory 109 (2017) 296–312

307



B
k
k

B= 1 +14
13

14
13

(40d)

B = 113 (40e)

B
k
k

B= −24
14

24
14

(40f)

A = − 124 (40g)

and

B
k k k

k A
=

+ +
23

13 14 24

23 23 (40h)

where A23 and B12 are free variables that can be predetermined arbitrarily.
Eqs. (38a–g, 39a–i, and 40a–h) reveal that three arrangements of PDPs and PIPs can minimize the number of PDP adjustment

devices through the associated installation constraints. On the basis of the specific requirements of different applications, suitable
associated arrangements can be selected accordingly.

5. Illustrative examples of 3-DOF, five-spring VPM with a minimal number of PDP adjustment devices

We refer to the examples shown in Section 4. Three arrangements with minimal numbers of PDP adjustment devices are
considered as illustrative examples. The inertia and dimensional parameters of the manipulator are shown in Table 2.

The spring constants k12, k13, k14, k23, and k24 are determined through trial and error with appropriate installation parameters
A12, B12; A13, B13; A14, B14; A23, B23; and A24, B24. According to Eqs. (18a–b and 21a–b), Aik and Bik can be transformed into scalars
aik, bik and angles αik, βik, which represent the distance and direction relative to the associated origin of each link. Their associated
spring constants and attachment angles are listed in Table 3 (a)–(c).

Table 4 (a)–(c) shows the installation parameters corresponding to payloads of 0–3 kg. The PDPs change according to the
payload, and the PIPs are independent of the payload. In addition, d is the displacement of the PDPs. In Table 4 (b), PDPs with
negative values denote that they have been adjusted in the negative direction.

On the basis of Table 4, the installation parameters associated with payloads of 1 and 2 kg are illustrated in Fig. 6(a)–(c),
respectively. The illustrated plots show proportions that are realistic with respect to the link lengths. The PDP adjustment devices in
the schematic show that the joint is adjustable according to the displacement d as the payload changes, and it can be locked at a

Table 4
Installation parameters corresponding to different payloads.

(a) 3-B-R2 arrangement

mp(kg) a12(m) a13(m) a14(m) a23(m) a24(m) b12(m) b13(m) b14(m) b23(m) b24(m)

0 0.108 0.017 0.004 0.3 0.2 0.04 0.075 0.15 0.1 0.075
1 0.102
2 0.2
3 0.298
d(m/kg) 0.098

(b) 3-B-E arrangement

mp(kg) a12(m) a13(m) a14(m) a23(m) a24(m) b12(m) b13(m) b14(m) b23(m) b24(m)

0 −0.075 −0.062 0.005 0.3 0.2 0.08 0.04 0.12 0.124 0.06
1 0.048 0.061 0.128
2 0.171 0.184 0.251
3 0.294 0.307 0.374
d(m/kg) 0.123 0.123 0.123

(c) 3-B-R1-E arrangement

mp(kg) a12(m) a13(m) a14(m) a23(m) a24(m) b12(m) b13(m) b14(m) b23(m) b24(m)

0 0.04 0.057 0.003 0.3 0.2 0.08 0.2 0.188 0.094 0.063
1 0.135 0.081
2 0.213 0.159
3 0.291 0.237
d(m/kg) 0.078 0.078
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determined position along the vertical axis when the manipulator is functioning.
Three models were simulated using MATLAB® software, and the elastic potential energy functions and the gravitational potential

energy functions with payloads of 1, 2, and 3 kg are plotted in Fig. 7(a)–(c). The motion initially has the orientations θ2 = 90°, θ3 =
0°, and θ4 = 0°. Subsequently, links 2, 3, and 4 are lowered to complete the motion, where θ2 = -30°, θ3 = 60°, and θ4 = 60°. The
elastic and gravitational potential energies are transferred completely, and therefore, the simulated results of the total potential
energy remain constant, as shown in Fig. 7. The total potential energy of each arrangement is shown in Table 5 respectively. The
simulated results confirm that the three VPM designs with the minimal numbers of PDP adjustment devices can be balanced with
different payloads and any configuration.

In Table 5, the column of ΔUt represents energy required during movement of a PDP adjustment device from location of (mp– 1)
to location ofmp. The energy requirement ΔUt increases when the payload increases. The energy consumption levels of arrangement
3-B-R2 and 3-B-R1-E are approximately equal. Arrangement 3-B-E requires less energy than arrangements 3-B-R2 and 3-B-R1-E for
values of mp between 0 and 1. However, the energy consumption levels for values of mp between 1 and 2, and for values of mp

between 2 and 3 are apparently greater than the energy consumption levels of the other two arrangements. In summary, the energy
efficiency levels for arrangements 3-B-R2 and 3-B-R1-E are similar. Arrangement 3-B-E performs more efficiently when the payload
is less than 1 kg.

To change the payload and to move the PDP adjustment device without locking weight arms, the procedure should follow the
steps as shown in Fig. 8(a)-(f). First, lower the payload to the ground so the links do not fall down when the PDP adjustment device is
moved to the zero position (i.e., the position where mp = 0). Remove the payload at the zero position, then the manipulator will
maintain equilibrium. Second, put a new payload on the end link and set the PDP adjustment device to a new balanced position. At
this point, the new payload is equilibrated.

To implement zero-free-length springs with high values of elongation, wire and pulley arrangements are needed for standard
springs to emulate zero-free length springs [10]. The implementation of a wire and pulley arrangement for 3-B-R2 is shown in Fig. 9.
Spring S14 is fitted on the PDP adjustment device to adjust PDP values when the payload changes. Springs S12 and S13 are ground-

Fig. 6. Three-DOF, five-spring VPM with the minimal number of PDP adjustment devices with payloads of 1 and 2 kg: (a) 3-B-R2 arrangement; (b) 3-B-E
arrangement; (c) 3-B-R1-E arrangement.
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adjacent springs; hence, they can be guided to the ground directly. Springs S23 and S24 are non-ground-adjacent springs, therefore
they should be guided to the origin point before the payload is set on the ground.

6. Conclusion

This paper presents a design methodology for determining the admissible arrangements of PDPs for different spring
configurations. The balancing object of each installation parameter in the SBM is discussed according to its balancing equations.
The ground-adjacent installation parameters are determined to be PDPs; PDPs are arranged to avoid the interference of the motion

Fig. 7. Simulated potential energy values with payloads of 1, 2, and 3 kg: (a) 3-B-R2 arrangement; (b) 3-B-E arrangement; (c) 3-B-R1-E arrangement.

Table 5
Total potential energy values with payloads of 0, 1, 2, and 3 kg, and the energy consumption values for adjusting PDPs to gain 1 kg of payload.

(a) 3-B-R2 arrangement (b) 3-B-E arrangement (c) 3-B-R1-E arrangement

mp (kg) Ut (J) ΔUt (J) Ut (J) ΔUt (J) Ut (J) ΔUt (J)
0 70.533 65.933 104.528
1 71.577 1.044 66.588 0.655 105.572 1.044
2 74.546 2.969 82.280 15.692 108.156 2.584
3 79.439 4.894 113.009 30.729 112.281 4.124
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of links. The admissible spring configuration for a VPM is determined by the number of PDPs required to solve the simultaneous
balancing equations. The derived equations of the PDPs are linear to the payload quantity. The PDP adjustment devices are sliders
that can adjust the PDPs by movement to different positions; they can be locked at any position along the vertical axis. Thus, the
number of PDP adjustment devices is determined by the number of PDPs. According to the interrelations between the PDPs and the
PIPs, the minimal number of PDP adjustment devices is derived on the basis of two additional criteria: (1) reduction in the number
of PDPs and (2) equivalent displacement of PDPs; thus, the required number of PDP adjustment devices can be minimized to one
except for a few special situations. Three designs for a 3-DOF, five-spring VPM with the minimal number of PDP adjustment devices
are used as illustrative examples. Each design has a specific arrangement of installation parameters, and the proper arrangement can
be selected according to the requirements of each task. MATLAB computer simulation results are used to verify the static balance of
different payload quantities, and the energy that the adjustments required were estimated accordingly.
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